Advertisement

Tissue Engineering by Cell Transplantation

  • P. V. Shastri
  • I. Martin
Conference paper
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 35)

Abstract

It has long been known that dissociated mammalian cells are capable of forming sheets of tissue in monolayer cultures (Steinberg 1963). The recognition that the final form of a mass of cells can be influenced and dictated by associating it with a scaffolding material led to the emergence of Tissue Engineering (TE). The earliest attempts at engineering a tissue mass using the principles of TE were carried out by Bell et al. (1979, 1981a,b) and Yannas et al. (1980, 1982; Yannas and Burke 1980) at the Massachusetts Institute of Technology in the late 1970s early 1980s. Their approach relied on the use of collagen-based gels and foams to provide the necessary structural definition for the proliferation and differentiation of neonatal human foreskin fibroblasts into an epidermis-like tissue. While these experiments proved the feasibility of engineering a viable, well-defined mass of tissue with biological functionality, the use of a collagen-based scaffold displayed some serious drawbacks. The shrinkage of the scaffold under the contractile forces exerted by the cells and the immunological issues associated with the use of bovine collagen are still of primary concern. Furthermore, due to the difficulty of processing collagen into large, complex structures, TE using collagen has been restricted to membranes or sheets of tissue, mostly suited to the engineering of skin equivalents.

Keywords

Neural Stem Cell Bone Marrow Stromal Cell Glycolic Acid Tissue Engineer Biomed Mater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anseth K, Shastri V, Langer R (1999) Photopolymerizable degradable polyanhydrides with osteocompatibility. Nat Biotechnol 17 (2): 156–159PubMedCrossRefGoogle Scholar
  2. Asahara T, Murohara T, Sullivan A, Silver M, Zee R van der, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967PubMedCrossRefGoogle Scholar
  3. Asahara T, Kalka C, Isner J (2000) Stem cell therapy and gene transfer for regeneration. Gene Ther 7 (6): 451–457PubMedCrossRefGoogle Scholar
  4. Baldwin H (1996) Early embryonic vascular development. Cardiovasc Res 31: E34–45PubMedCrossRefGoogle Scholar
  5. Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76 (3): 1274–1278PubMedCrossRefGoogle Scholar
  6. Bell E, Ehrlich H, Sher S, Merrill C, Sarber R, Hull B, Nakatsuji T, Church D, Buttle D (1981a) Development and use of a living skin equivalent. Plast Reconstr Surg 67 (3): 386–392PubMedCrossRefGoogle Scholar
  7. Bell E, Ehrlich H, Buttle D, Nakatsuji T (198 lb) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211: 1052–1054Google Scholar
  8. Bell E, Rosenberg M, Kemp P, Gay R, Green G, Muthukumaran N, Nolte C (1991) Recipes for reconstituting skin. J Biomech Eng 113 (2): 113–119PubMedCrossRefGoogle Scholar
  9. Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D, Galli R, Selleri S, Di Meco F, De Fraja C, Vescovi A, Cattaneo E, Finocchiaro G (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6 (4): 447–450PubMedCrossRefGoogle Scholar
  10. Ben-Zeev, A, Robinson G, Bucher N, Farmer S (1988) Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc Natl Acad Sci USA 85: 2161–2165CrossRefGoogle Scholar
  11. Bianco P, Robey P (2000) Marrow stromal stem cells. J Clin Invest 105 (12): 1663–1668PubMedCrossRefGoogle Scholar
  12. Bowlin G, Rittgers S (1997) Electrostatic endothelial cell seeding technique for small-diameter (6 mm) vascular prostheses: feasibility testing. Cell Transplant 6 (6): 623–629PubMedCrossRefGoogle Scholar
  13. Brustle O, McKay R (1996) Neuronal progenitors as tools for cell replacement in the nervous system. Cun Opin Neurobiol 6 (5): 688–695CrossRefGoogle Scholar
  14. Brustle O, Maskos U, McKay R (1995) Host-guided migration allows targeted introduction of neurons into the embryonic brain. Neuron 15 (6): 1275–1285PubMedCrossRefGoogle Scholar
  15. Burg K, Holder WJ, Culberson C, Beiler R, Greene K, Loebsack A, Roland W, Eiselt P, Mooney D, Halberstadt C (2000) Comparative study of seeding methods for three-dimensional polymeric scaffolds. J Biomed Mater Res 51 (4): 642–649PubMedCrossRefGoogle Scholar
  16. Cage F (2000) Mammalian neural stem cells. Science 287: 1433–1438CrossRefGoogle Scholar
  17. Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams D (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19 (23): 2101–2127PubMedCrossRefGoogle Scholar
  18. Cao Y, Vacanti J, Paige K, Upton J, Vacanti C (1997) Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 100 (2): 297–302PubMedCrossRefGoogle Scholar
  19. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J (2000) Generalized potential of adult neural stem cells. Science. 288: 1660–1663PubMedCrossRefGoogle Scholar
  20. Cook A, Hrkach J, Gao N, Johnson I, Pajvani U, Cannizzaro S, Langer R (1997) Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res 35 (4): 513–523PubMedCrossRefGoogle Scholar
  21. Dunn JCY, Yarmush MC, Koebe HG, Tompkins RG (1989) Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J 3: 174–177PubMedGoogle Scholar
  22. Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, Langer R (2000) Photo-encapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 51 (2): 164–171PubMedCrossRefGoogle Scholar
  23. Folkman J, Moscona A (1978) Role of cell shape in growth control. Nature 273: 345–349PubMedCrossRefGoogle Scholar
  24. Freed L, Hollander A, Martin I, Barry J, Langer R, Vunjak-Novakovic G (1998) Chondrogenesis in a cell-polymer-bioreactor system. Exp Cell Res 240 (1): 58–65PubMedCrossRefGoogle Scholar
  25. Gao J, Niklason L, Zhao X, Langer R (1998) Surface modification of polyanhydride microspheres. J Pharm Sci 87 (2): 246–248PubMedCrossRefGoogle Scholar
  26. Gojo S, Cooper D, Iacomini J, LeGuern C (2000) Gene therapy and transplantation. Transplantation 69 (10): 1995–1999PubMedCrossRefGoogle Scholar
  27. Gussoni E, Soneoka Y, Strickland C, Buzney E, Khan M, Flint A, Kunkel L, Mulligan R (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401: 390–394PubMedGoogle Scholar
  28. Han S, Fischer I (2000) Neural stem cells and gene therapy: prospects for repairing the injured spinal cord. JAMA 283 (17): 2300–2301PubMedCrossRefGoogle Scholar
  29. Hickman M, Malone R, Lehmann-Bruinsma K, Sih T, Knoell D, Szoka F, Walzem R, Carlson D, Powell J (1994) Gene expression following direct injection of DNA into liver. Hum Gene Ther 5 (12): 1477PubMedCrossRefGoogle Scholar
  30. Hsieh A, Tsai C, Ma Q, Lin T, Banes A, Villarreal F, Akeson W, Sung K (2000) Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J Orthop Res 18 (2): 220–227PubMedCrossRefGoogle Scholar
  31. Isner J (1998) Arterial gene transfer of naked DNA for therapeutic angiogenesis: early clinical results. Adv Drug Deliv Rev 30 (1–3): 185–197PubMedCrossRefGoogle Scholar
  32. Kim B, Putnam A, Kulik T, Mooney D (1998) Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnol Bioeng 57 (1): 46–54PubMedCrossRefGoogle Scholar
  33. Kuhl P, Griffith-Cima L (1996) Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat Med 2 (9): 1022–1027PubMedCrossRefGoogle Scholar
  34. Kuhl P, Griffith-Cima L (1997) Erratum to paper in 1996. Nat Med 3 (1): 93Google Scholar
  35. Langer R (1998) Drug delivery and targeting. Nature 392 [Suppl]: 5–10PubMedGoogle Scholar
  36. Langer R, Vacanti JP (1993) Tissue engineering. Science 260: 920–926PubMedCrossRefGoogle Scholar
  37. Levy R, Goldstein S, Bonadio J (1998) Gene therapy for tissue repair and regeneration. Adv Drug Deliv Rev 33 (1–2): 53–69PubMedGoogle Scholar
  38. Lin Y, Weisdorf D, Solovey A, Hebbel R (2000) Origings of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105 (1): 71–77PubMedCrossRefGoogle Scholar
  39. Lu L, Mikos A (1996) The importance of new processing techniques in tissue engineering. MRS Bull 21 (1l): 28–32PubMedGoogle Scholar
  40. Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R (1997) Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138 (10): 4456–4462PubMedCrossRefGoogle Scholar
  41. Martin 1, Shastri V, Padera R, Langer R, Yang J, MacJay A, Vunjak-Novakovic G, Freed L (2001) Selective in vitro differentiation of mammalian mesenchymal frogenitor cells into three dimensions skeletal tissues. J Biomed Mat Res 55: 229–235CrossRefGoogle Scholar
  42. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5 (12): 1410–1412PubMedCrossRefGoogle Scholar
  43. McKay R (1997) Stem cells in the central nervous system. Science 276 (5309): 66–71PubMedCrossRefGoogle Scholar
  44. Mikos A, Bao Y, Cima L, Ingber D, Vacanti J, Langer R (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27 (2): 183–189PubMedCrossRefGoogle Scholar
  45. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R (1994) Preparation and Characterization of Poly(L-lactic acid) Foams. Polymer 35: 1068–1077CrossRefGoogle Scholar
  46. Momma S, Johansson C, Frisen J (2000) Get to know your stem cells. Curr Opin Neurobiol 10: 45–49PubMedCrossRefGoogle Scholar
  47. Mulligan R (1993) The basic science of gene therapy. Science 260: 926–932PubMedCrossRefGoogle Scholar
  48. Niklason L, Gao J, Abbott W, Hirschi K, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284: 489–493PubMedCrossRefGoogle Scholar
  49. Oberpenning F. Meng J, Yoo J, Atala A (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17 (2): 149–155Google Scholar
  50. Pabst P (1999) Gene therapy and tissue engineering patents abound. Tissue Eng 5 (1): 79PubMedCrossRefGoogle Scholar
  51. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284: 1168–1170PubMedCrossRefGoogle Scholar
  52. Powell C, Shansky J, Del Tatto M, Forman D, Hennessey J, Sullivan K, Zielinski B, Vandenburgh H (1999) Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy. Hum Gene Ther 10 (4): 565–577PubMedCrossRefGoogle Scholar
  53. Qiu Q, Ducheyne P, Ayyaswamy P (1999) Fabrication, characterization and evaluation of bioceramic hollow microspheres used as microcarriers for 3-D bone tissue formation in rotating bioreactors. Biomaterials 20 (11): 989–1001PubMedCrossRefGoogle Scholar
  54. Rafii S (2000) Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest 105 (1): 17–19PubMedCrossRefGoogle Scholar
  55. Schmidt C, Shastri V, Vacanti J, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci USA 94: 8948–8953PubMedCrossRefGoogle Scholar
  56. Shastri V, Pishko M (1998) Biomedical applications of electroactive polymers. In: Wise D, Wnek G, Trantolo D, Gresser J (eds) Electrical and optical systems: fundamentals, methods and applications. World Scientific Publishing Company, New York, pp 1031–1051Google Scholar
  57. Shastri V, Schmidt C, Kim T-H, Vacanti J, Langer R (1996) Polypyrrole-A potential candidate for stimulated nerve regeneration. Materials Research Society Meeting 414:1 13–1 17Google Scholar
  58. Shastri V, Rahman N, Martin I, Langer R (1999) Applications of conductive polymers in bone regeneration. Mat Res Soc Symp Proc 550: 215–219CrossRefGoogle Scholar
  59. Shastri V, Martin I, Langer R (2000) Macroporous polymer foams by hydrocarbon templating. Proc Natl Acad Sci USA 97 (5): 1970–1975PubMedCrossRefGoogle Scholar
  60. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92 (2): 362–367PubMedGoogle Scholar
  61. Sittinger M, Bujia J, Minuth W, Hammer C, Burmester G (1994) Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture. Biomaterials 15 (6): 451–456PubMedCrossRefGoogle Scholar
  62. Springer M, Chen A, Kraft P, Bednarski M, Blau H (1998) VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell 2: 549–558PubMedCrossRefGoogle Scholar
  63. Steinberg MS (1963) Reconstruction of tissues by dissociated cells. Science 141: 401–408PubMedCrossRefGoogle Scholar
  64. Taylor D, Zane Atkins B, Hungspreugs P, Jone T. Reedy M, Hutcheson K, Glower D, Kraus W (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4 (8): 929–933Google Scholar
  65. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147PubMedCrossRefGoogle Scholar
  66. Vacanti C, Langer R, Schloo B, Vacanti J (1991) Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg 88 (5): 753–759PubMedCrossRefGoogle Scholar
  67. Vacanti J, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354 ISuppl 11: S132–4Google Scholar
  68. Vacanti J, Morse M, Saltzman W, Domb A, Perez-Atayde A, Freed L, Langer R (1988) Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg 23 (1 Pt): 23–29CrossRefGoogle Scholar
  69. van Wachem, P, Stronck J, Koers-Zuideveld R, Dijk F, Wildevuur C (1990) Vacuum cell seeding: a new method for the fast application of an evenly distributed cell layer on porous vascular grafts. Biomaterials 1 1(81: 602–606Google Scholar
  70. Villa A, Snyder E, Vescovi A, Martinez-Serrano A (2000) Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp Neurol 161 (1): 67–84PubMedCrossRefGoogle Scholar
  71. Vunjak-Novakovic, G, Obradovic B, Martin I, Bursae P, Langer R, Freed L (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog 14 (2): 193–202PubMedCrossRefGoogle Scholar
  72. Wald H, Sarakinos G, Lyman M, Mikos A, Vacanti J, Langer R (1993) Cell seeding in porous transplantation devices. Biomaterials 14 (4): 270–278PubMedCrossRefGoogle Scholar
  73. Wilson J, Jefferson D, Chowdhury J, Novikoff P, Johnston D, Mulligan R (1988) Retrovirus-mediated transduction of adult hepatocytes. Proc Natl Acad Sci USA 85 (9): 3014–3018PubMedCrossRefGoogle Scholar
  74. Wilson J, Birinyi L, Salomon R, Libby P, Callow A, Mulligan R (1989) Genetically modified endothelial cells in the treatment of human diseases. Trans Assoc Am Physicians 102: 139–147PubMedGoogle Scholar
  75. Yannas I, Burke J (1980) Design of an artificial skin. 1. Basic design principles. J Biomed Mater Res 14 (1): 65–81PubMedCrossRefGoogle Scholar
  76. Yannas I, Burke J, Gordon P, Huang C, Rubenstein R (1980) Design of an artificial skin. Il. Control of chemical composition. J Biomed Mater Res 14 (2): 107–132PubMedCrossRefGoogle Scholar
  77. Yannas I, Burke J, Orgill D, Skrabut E (1982) Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 215: 174–176PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • P. V. Shastri
  • I. Martin

There are no affiliations available

Personalised recommendations