Nonlinear Dynamics of Active Brownian Particles

  • Werner Ebeling


We consider finite systems of interacting Brownian particles including active friction in the framework of nonlinear dynamics and statistical/stochastic theory. First we study the statistical properties for one-dimensional systems of N masses connected by Toda springs which are imbedded in a heat bath. Including negative friction, we find N + 1 attractors of motion, including an attractor describing dissipative soli-tons. Noise leads to transition between the deterministic attractors. In the case of two-dimensional motion of interacting particles, angular momenta are generated and left/right rotations of pairs and swarms are found.


Brownian Particle Heat Bath Active Friction Stochastic Force Toda System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Schweitzer, W. Ebeling, B. Tilch: Phys. Rev. Lett. 80, 5044 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    W. Ebeling, F. Schweitzer, B. Tilch: BioSystems 49, 17 (1999)CrossRefGoogle Scholar
  3. 3.
    U. Erdmann, W. Ebeling, F. Schweitzer, L. Schimansky-Geier: Eur. Phys. J. B 15, 105 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    V. Makarov, W. Ebeling, M. Velarde: Int. J. Bifurc. and Chaos 10, 1075 (2000)MathSciNetADSMATHGoogle Scholar
  5. 5.
    W. Ebeling, U. Erdmann, J Dunkel, M. Jenssen: J. Stat. Phys. 101, 442 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    M. Toda: Theory of Nonlinear Lattices (Springer, Berlin 1981 ); M. Toda: Nonlinear Waves and Solitons ( Kluwer, Dordrecht 1983 )Google Scholar
  7. 7.
    J.A. Krumhansl, J.R. Schrieffer: Phys. Rev. B 11, 3535 (1975)ADSCrossRefGoogle Scholar
  8. 8.
    J. Bernasconi, T. Schneider (eds.): Physics in One Dimension ( Springer, Berlin 1981 )MATHGoogle Scholar
  9. 9.
    S.E. Trullinger, V.E. Zakharov, V.L. Pokrovsky (eds.): Solitons ( North Holland, Amsterdam 1986 )MATHGoogle Scholar
  10. 10.
    H. Bolterauer, M. Opper: Z. Phys. B 42, 155 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    M. Toda, N. Saitoh: J. Phys. Soc. Japan 52, 3703 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    M. Jenssen: Phys. Lett. A 159, 6 (1991)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    W. Ebeling, M. Jenssen: Ber. Bunsenges, Phys. Chem. 95, 1356 (1991); Physica A 188, 350 (1992)Google Scholar
  14. 14.
    M. Jenssen, W. Ebeling: Physica D 141, 117 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    J.M. Rayleigh: The Theory of Sound, Vol. 1 ( MacMillan, London and New York 1984 )Google Scholar
  16. 16.
    Yu.L. Klimontovich: Statistical Physics of Open Systems ( Kluwer, Dordrecht 1995 )CrossRefGoogle Scholar
  17. 17.
    W. Ebeling, A. Chetverikov, M. Jenssen: Ukrainian J. Physics 45, 479 (2000)Google Scholar
  18. 18.
    W. Ebeling, V.J. Podlipchuk, A.A. Valuev: Physica A 217, 22 (1995); J. Mol. Liq. 73,74, 445 (1997)Google Scholar
  19. 19.
    W. Ebeling, M.V.J. Podlipchuk: Z. physik. Chem. 193, 207 (1996)CrossRefGoogle Scholar
  20. 20.
    W. Ebeling, M. Sapeshinsky, A. Valuev: Int. J. Bifurc. and Chaos 8, 755 (1998)MATHCrossRefGoogle Scholar
  21. 21.
    M. Schienbein, H. Gruler: Bull. Math. Biol. 55, 585 (1993)MATHGoogle Scholar
  22. 22.
    U. Erdmann, W. Ebeling, V. Anishchenko: Preprint Sfb–555–5–2001 Humboldt University Berlin (2001)Google Scholar
  23. 23.
    T. Viscek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shochet: Phys. Rev. Lett. 75, 1226 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    I. Derenyi, T. Viscek: Phys. Rev. Lett. 75, 294 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    F. Schweitzer, W. Ebeling, B. Tilch: Phys. Rev. E, in press (2001); condmat/0103360Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Werner Ebeling

There are no affiliations available

Personalised recommendations