Skip to main content

Self-Organized Criticality in Forest-Fire Models

  • Chapter
Computational Statistical Physics

Summary

We review properties of the self-organized critical (SOC) forest-fire model (FFM). Self-organized critical systems drive themselves into a critical state without fine-tuning of parameters. After an introduction, the rules of the model, and the conditions for spiral shaped and SOC large scale structures are given. For the SOC state, critical exponents and scaling relations are introduced. The existence of an upper critical dimension and the universal behavior of the model are discussed. The relations and differences between FFM and percolation systems are outlined, considering an extension of the FFM into the regions beyond the critical point. Phase transitions and the various structures found in these regions are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.B. Mandelbrot: The Fractal Geometry of Nature ( Freeman, New York 1983 )

    Google Scholar 

  2. A. Bunde, S. Havlin: Fractals and Disordered Systems, ed. by A. Bunde, S. Havlin ( Springer, New York 1991 )

    Google Scholar 

  3. P. Dutta, P.M. Horn: Rev. Mod. Phys. 53, 497 (1981)

    Article  ADS  Google Scholar 

  4. P. Bak, C. Tang, K. Wiesenfeld: Phys. Rev. Lett. 59, 381 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  5. B. Drossel, F. Schwabl: Phys. Rev. Lett. 69, 1629 (1992)

    Article  ADS  Google Scholar 

  6. P. Bak, K. Chen, C. Tang: Phys. Lett. A 147, 297 (1990)

    Article  ADS  Google Scholar 

  7. B. Drossel, F. Schwabl: Physica A 199, 183 (1993)

    Article  ADS  Google Scholar 

  8. E.V. Albano: Physica A 216, 213 (1995)

    Article  ADS  Google Scholar 

  9. J.J. Tyson, J.P. Keener: Physica D 32, 327 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. S. Clar, B. Drossel, F. Schwabl: J. Phys. Condens. Matter 8, 6803 (1996)

    Article  ADS  Google Scholar 

  11. P. Grassberger, H. Kantz: J. Stat. Phys. 63, 685 (1991)

    Article  ADS  Google Scholar 

  12. C.L. Henley: Phys. Rev. Lett. 71, 2741 (1993)

    Article  ADS  Google Scholar 

  13. P. Grassberger: J. Phys. A 26, 2081 (1993)

    Article  ADS  Google Scholar 

  14. K. Christensen, H. Flyvberg, Z. Olami: Phys. Rev. Lett. 71, 2737 (1993)

    Article  ADS  Google Scholar 

  15. A. Honecker, I. Peschl: Physica A 239, 509 (1997)

    Article  ADS  Google Scholar 

  16. K. Schenk, B. Drossel, S. Clar, F. Schwabl: Eur. Phys. J. B 15, 177 (2000)

    Article  ADS  Google Scholar 

  17. S. Clar, B. Drossel, F. Schwabl: Phys. Rev. E 50, 1009 (1994)

    Article  ADS  Google Scholar 

  18. B. Drossel, S. Clar, F. Schwabl: Phys. Rev. Lett. 71, 3739 (1993)

    Article  ADS  Google Scholar 

  19. V. Loreto, L. Pietronero, A. Vespignani, S. Zapperi: Phys. Rev. Lett. 75, 465 (1995)

    Article  ADS  Google Scholar 

  20. S. Clar, B. Drossel, F. Schwabl: Phys. Rev. Lett. 75, 2722 (1995)

    Article  ADS  Google Scholar 

  21. S. Clar, K. Schenk, F. Schwabl: Phys. Rev. E 55, 2174 (1997)

    Article  ADS  Google Scholar 

  22. S. Clar, B. Drossel, K. Schenk, F. Schwabl: Physica A 266, 153 (1999)

    Article  Google Scholar 

  23. B. Drossel: Ph.D. Thesis, TU München (1994)

    Google Scholar 

  24. M. Paczuski, P. Bak: Phys. Rev. E 48, R3214 (1993)

    Article  ADS  Google Scholar 

  25. B. Drossel, S. Clar, F. Schwabl: Z. Naturforsch. 49, 856 (1994)

    Google Scholar 

  26. B. Drossel, F. Schwabl, Physica A 204, 212 (1994)

    Article  ADS  Google Scholar 

  27. D. Stauffer, A. Aharony: Introduction to Percolation Theory ( Taylor and Francis, London 1992 )

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schenk, K., Drossel, B., Schwabl, F. (2002). Self-Organized Criticality in Forest-Fire Models. In: Computational Statistical Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04804-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04804-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07571-1

  • Online ISBN: 978-3-662-04804-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics