Skip to main content

Characterization of the Metal-Insulator Transition in the Anderson Model of Localization

  • Chapter
Computational Statistical Physics
  • 1004 Accesses

Summary

In this chapter we discuss three different methods in statistical physics which have been successfully implemented to determine the metal-insulator transition and to characterize the electronic states in disordered systems described by the AnderĀ­son model of localization. First, we study the spatial decay of electronic states of the Anderson Hamiltonian along quasi-one-dimensional bars and use finite-size scaling to analyze the data and the transition in infinite three-dimensional samples. Second, we calculate the eigenfunctions and describe their spatial distribution by means of multi-fractal analysis. Third, we compute the eigenvalue spectrum and study the energy level statistics to determine the transition. Emphasis is laid on programming tricks to save computer time or to increase accuracy. As an example, some results of large-scale nuĀ­merical investigations for anisotropic materials are presented, demonstrating that the three methods yield coinciding results. Several related topics of current research on the electronic properties of disordered materials are mentioned in which these statistical methods have been successfully applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P.W. Anderson: Phys. Rev. 109, 1492 (1958)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  2. P.E. Lindelof, J. Norregard, J. Hanberg: Phys. Scr. T 14, 317 (1986)

    Google ScholarĀ 

  3. P.-E. Wolf, G. Maret: Phys. Rev. Lett. 55, 2696 (1985)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  4. E.N. Economou, C.M. Soukoulis: Phys. Rev. B 28, 1093 (1983)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  5. W. Apel, T.M. Rice: J. Phys. C 16, L1151 (1983); Q. Li, C.M. Soukoulis, E.N. Economou, G.S. Grest: Phys. Rev. B 40, 2825 (1989); I. Zambetaki, Q. Li, E.N. Economou, C.M. Soukoulis: Phys. Rev. Lett. 76, 3614 (1996); Q. Li, S. Katsoprinakis, E.N. Economou, C.M. Soukoulis: Phys. Rev. B 56, R4297 (1997), condmat/9704104

    Google ScholarĀ 

  6. H. Stupp, M. Hornung, M. Lakner, O. Madel, H.V. Lƶhneysen: Phys. Rev. Lett. 71, 2634 (1993)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  7. V.I. Oseledec: Trans. Moscow Math. Soc. 19, 197 (1968)

    MathSciNetĀ  Google ScholarĀ 

  8. B. Kramer, M. Schreiber: `Transfer-Matrix Methods and Finite-Size Scaling for Disordered Systems. In: Computational Physics - Selected Methods, Simple Exercises, Serious Applications, ed. by K.H. Hoffmann, M. Schreiber ( Springer, Berlin, Heidelberg 1996 ) pp. 166 - 188

    Google ScholarĀ 

  9. http://www.tu- chemnitz.de/physik/HERAEUS/2000/Springer.html

    Google ScholarĀ 

  10. A. MacKinnon, B. Kramer: Z. Phys. B 53, 1 (1983)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  11. A. MacKinnon: J. Phys. Condens. Matter 6, 2511 (1994)

    Google ScholarĀ 

  12. F. Milde: Disorder-Induced Metal-Insulator Transition in Anisotropic Systems. Dissertation, Technische UniversitƤt Chemnitz (Chemnitz 2000)

    Google ScholarĀ 

  13. K. Slevin, T. Ohtsuki: Phys. Rev. Lett. 82, 382 (1999), cond-mat/9812065

    Google ScholarĀ 

  14. F. Milde, R. A. Rƶmer, M. Schreiber, V. Uski: Eur. Phys. J. B 15, 685 (2000)

    Google ScholarĀ 

  15. M. Schreiber: ā€˜Multifractal Characteristics of Electronic Wave Functions in Disordered Systemsā€™. In: Computational Physics - Selected Methods, Simple Exercises, Serious Applications, ed. by K.H. Hoffmann, M. Schreiber ( Springer, Berlin, Heidelberg 1996 ) pp. 147 - 165

    Google ScholarĀ 

  16. J. Cullum and R.A. Willoughby: Lanczos Algorithms for Large Symmetric Eigen-value Computations, Vol. 1: Theory. ( BirkhƤuser, Boston 1985 )

    Google ScholarĀ 

  17. U. Elsner, V. Mehrmann, F. Milde, R.A. Rƶmer, M. Schreiber: SIAM J. Sci. Comp. 20, 2089 (1999)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  18. M. Schreiber, F. Milde, R.A. Rƶmer, U. Elsner, V. Mehrmann: Comp. Phys. Comm. 121-122, 517 (1999)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  19. B.B. Mandelbrot: The Fractal Geometry of Nature ( Freemann, New York 1982 )

    MATHĀ  Google ScholarĀ 

  20. H. Aoki: J. Phys. C: Solid State Phys. 16, L205 (1983)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  21. F. Wegner: Nucl. Phys. B 316, 663 (1989)

    Google ScholarĀ 

  22. M. Schreiber, H. Grussbach: J. Fractals 1, 1037 (1993)

    ArticleĀ  Google ScholarĀ 

  23. H. Grussbach, M. Schreiber: Phys. Rev. B 57, 663 (1995)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  24. F. Milde, R. A. Rƶmer, M. Schreiber: Phys. Rev. B 55, 9463 (1997)

    Google ScholarĀ 

  25. M. Schreiber, U. Grimm, R.A. Rƶmer, J.X. Zhong: Physica A 266, 477 (1999)

    ArticleĀ  Google ScholarĀ 

  26. U. Grimm, R.A. Rƶmer, M. Schreiber, J.X. Zhong: Mat. Sci. and Eng. 294-296, 564 (2001), cond-mat/9908063.

    Google ScholarĀ 

  27. J.X. Zhong, U. Grimm, R.A. Rƶmer, M. Schreiber: Phys. Rev. Lett. 80, 3996 (1998)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  28. I.K. Zharekeshev, B. Kramer: Phys. Rev. Lett. 79, 717 (1997)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  29. G. Casati, F. Izrailev, L. Molinari: J. Phys. A 24, 4755 (1991)

    Google ScholarĀ 

  30. F. Epperlein, M. Schreiber, T. Vojta: Phys. Rev. B 56, 5890 (1997)

    Google ScholarĀ 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schreiber, M., Milde, F. (2002). Characterization of the Metal-Insulator Transition in the Anderson Model of Localization. In: Computational Statistical Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04804-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04804-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07571-1

  • Online ISBN: 978-3-662-04804-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics