Skip to main content

Characterization of the Metal-Insulator Transition in the Anderson Model of Localization

  • Chapter
  • 997 Accesses

Summary

In this chapter we discuss three different methods in statistical physics which have been successfully implemented to determine the metal-insulator transition and to characterize the electronic states in disordered systems described by the Ander­son model of localization. First, we study the spatial decay of electronic states of the Anderson Hamiltonian along quasi-one-dimensional bars and use finite-size scaling to analyze the data and the transition in infinite three-dimensional samples. Second, we calculate the eigenfunctions and describe their spatial distribution by means of multi-fractal analysis. Third, we compute the eigenvalue spectrum and study the energy level statistics to determine the transition. Emphasis is laid on programming tricks to save computer time or to increase accuracy. As an example, some results of large-scale nu­merical investigations for anisotropic materials are presented, demonstrating that the three methods yield coinciding results. Several related topics of current research on the electronic properties of disordered materials are mentioned in which these statistical methods have been successfully applied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W. Anderson: Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  2. P.E. Lindelof, J. Norregard, J. Hanberg: Phys. Scr. T 14, 317 (1986)

    Google Scholar 

  3. P.-E. Wolf, G. Maret: Phys. Rev. Lett. 55, 2696 (1985)

    Article  ADS  Google Scholar 

  4. E.N. Economou, C.M. Soukoulis: Phys. Rev. B 28, 1093 (1983)

    Article  ADS  Google Scholar 

  5. W. Apel, T.M. Rice: J. Phys. C 16, L1151 (1983); Q. Li, C.M. Soukoulis, E.N. Economou, G.S. Grest: Phys. Rev. B 40, 2825 (1989); I. Zambetaki, Q. Li, E.N. Economou, C.M. Soukoulis: Phys. Rev. Lett. 76, 3614 (1996); Q. Li, S. Katsoprinakis, E.N. Economou, C.M. Soukoulis: Phys. Rev. B 56, R4297 (1997), condmat/9704104

    Google Scholar 

  6. H. Stupp, M. Hornung, M. Lakner, O. Madel, H.V. Löhneysen: Phys. Rev. Lett. 71, 2634 (1993)

    Article  ADS  Google Scholar 

  7. V.I. Oseledec: Trans. Moscow Math. Soc. 19, 197 (1968)

    MathSciNet  Google Scholar 

  8. B. Kramer, M. Schreiber: `Transfer-Matrix Methods and Finite-Size Scaling for Disordered Systems. In: Computational Physics - Selected Methods, Simple Exercises, Serious Applications, ed. by K.H. Hoffmann, M. Schreiber ( Springer, Berlin, Heidelberg 1996 ) pp. 166 - 188

    Google Scholar 

  9. http://www.tu- chemnitz.de/physik/HERAEUS/2000/Springer.html

    Google Scholar 

  10. A. MacKinnon, B. Kramer: Z. Phys. B 53, 1 (1983)

    Article  ADS  Google Scholar 

  11. A. MacKinnon: J. Phys. Condens. Matter 6, 2511 (1994)

    Google Scholar 

  12. F. Milde: Disorder-Induced Metal-Insulator Transition in Anisotropic Systems. Dissertation, Technische Universität Chemnitz (Chemnitz 2000)

    Google Scholar 

  13. K. Slevin, T. Ohtsuki: Phys. Rev. Lett. 82, 382 (1999), cond-mat/9812065

    Google Scholar 

  14. F. Milde, R. A. Römer, M. Schreiber, V. Uski: Eur. Phys. J. B 15, 685 (2000)

    Google Scholar 

  15. M. Schreiber: ‘Multifractal Characteristics of Electronic Wave Functions in Disordered Systems’. In: Computational Physics - Selected Methods, Simple Exercises, Serious Applications, ed. by K.H. Hoffmann, M. Schreiber ( Springer, Berlin, Heidelberg 1996 ) pp. 147 - 165

    Google Scholar 

  16. J. Cullum and R.A. Willoughby: Lanczos Algorithms for Large Symmetric Eigen-value Computations, Vol. 1: Theory. ( Birkhäuser, Boston 1985 )

    Google Scholar 

  17. U. Elsner, V. Mehrmann, F. Milde, R.A. Römer, M. Schreiber: SIAM J. Sci. Comp. 20, 2089 (1999)

    Article  MATH  Google Scholar 

  18. M. Schreiber, F. Milde, R.A. Römer, U. Elsner, V. Mehrmann: Comp. Phys. Comm. 121-122, 517 (1999)

    Article  ADS  Google Scholar 

  19. B.B. Mandelbrot: The Fractal Geometry of Nature ( Freemann, New York 1982 )

    MATH  Google Scholar 

  20. H. Aoki: J. Phys. C: Solid State Phys. 16, L205 (1983)

    Article  ADS  Google Scholar 

  21. F. Wegner: Nucl. Phys. B 316, 663 (1989)

    Google Scholar 

  22. M. Schreiber, H. Grussbach: J. Fractals 1, 1037 (1993)

    Article  Google Scholar 

  23. H. Grussbach, M. Schreiber: Phys. Rev. B 57, 663 (1995)

    Article  ADS  Google Scholar 

  24. F. Milde, R. A. Römer, M. Schreiber: Phys. Rev. B 55, 9463 (1997)

    Google Scholar 

  25. M. Schreiber, U. Grimm, R.A. Römer, J.X. Zhong: Physica A 266, 477 (1999)

    Article  Google Scholar 

  26. U. Grimm, R.A. Römer, M. Schreiber, J.X. Zhong: Mat. Sci. and Eng. 294-296, 564 (2001), cond-mat/9908063.

    Google Scholar 

  27. J.X. Zhong, U. Grimm, R.A. Römer, M. Schreiber: Phys. Rev. Lett. 80, 3996 (1998)

    Article  ADS  Google Scholar 

  28. I.K. Zharekeshev, B. Kramer: Phys. Rev. Lett. 79, 717 (1997)

    Article  ADS  Google Scholar 

  29. G. Casati, F. Izrailev, L. Molinari: J. Phys. A 24, 4755 (1991)

    Google Scholar 

  30. F. Epperlein, M. Schreiber, T. Vojta: Phys. Rev. B 56, 5890 (1997)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schreiber, M., Milde, F. (2002). Characterization of the Metal-Insulator Transition in the Anderson Model of Localization. In: Computational Statistical Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04804-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04804-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07571-1

  • Online ISBN: 978-3-662-04804-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics