Skip to main content

Accurate Calculations of Relative Melting Temperatures of Mutant Proteins by Molecular Dynamics/Free Energy Perturbation Methods

  • Chapter
Biological Systems Under Extreme Conditions

Part of the book series: Biological and Medical Physics Series ((BIOMEDICAL))

Abstract

Melting-temperature shifts of mutant proteins were successfully calculated to high accuracy by improving the methods of molecular dynamics (MD) simulation and free energy perturbation calculations. First, MD simulations were performed by explicitly calculating long-range Coulomb interactions by the Particle—Particle and Particle—Cell (PPPC) method without truncating the interactions as in the conventional cutoff method. Second, free energy differences between the wild-type proteins and mutant proteins were estimated by the Acceptance Ratio Method (ARM) instead of the ordinary free energy perturbation method (FEPM). Melting-temperature shifts calculated for 14 mutant proteins of RNaseHl, human lysozyme, and the Myb R2 domain agreed well with their experimental values, although the calculation methodology does not include any adjustable parameters or experimental data for the mutants.

The conventional MD simulation/free energy calculation methodology is based on a cutoff and FEPM cannot successfully calculate the melting-temperature shifts for the following reasons: First, the truncation of the long-range Coulomb interactions by the cutoff method causes the protein structures for sampling conformations to be artificially deformed during the MD simulations. Second, the free energy calculations based on FEPM cannot give reliable values of changes in bond free energy due to the mutations because it utilizes conformations sampled from either state. Therefore, the conventional methodology has a large hysteresis error (mutation-path dependence) and statistical error.

In contrast, MD simulations explicitly including the long-range Coulomb interactions by the PPPC method maintained the protein structures near their X-ray structures and, furthermore, the thermal fluctuations around the equilibrium structures correlated well with both the experimental fluctuations deduced from X-ray temperature factors and with the order parameters of NMR spectroscopy. In addition, the free energy calculations based on ARM successfully gave reliable values for changes in bond free energy because it utilizes conformations sampled from both states. Therefore, the present MD/free energy calculation methodology based on PPPC and ARM suppressed the hysteresis error and statistical error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ishikawa, M. Okumura, K. Katayanagi, S. Kimura, S. Kanaya, H. Nakamura, K. Morikawa: J. Mol. Biol. 230, 529 (1993)

    Article  Google Scholar 

  2. B.W. Matthews: Curr. Opin. Struct. Biol. 3, 589 (1993)

    Article  MathSciNet  Google Scholar 

  3. S. Kimura, S. Kanaya, H. Nakamura: J. Biol. Chem. 267, 22014 (1992)

    Google Scholar 

  4. K. Ishikawa, H. Nakamura, K. Morikawa, S. Kanaya: Biochemistry 32, 6171 (1993)

    Article  Google Scholar 

  5. K. Takano, K. Ogasahara, H. Kaneda, Y. Yamagata, S. Fuji, E. Kanaya, M. Kikuchi, M. Oobatake, K. Yutani: J. Mol. Biol. 254, 62 (1995)

    Article  Google Scholar 

  6. A.E. Eriksson, W.A. Baase, B.W. Matthews: J. Mol. Biol. 229, 747 (1993)

    Article  Google Scholar 

  7. A. Horovitz, L. Serrano, B. Avron, M. Bycroft, A.R. Fersht: J. Mol. Biol. 216, 10311 (1990)

    Article  Google Scholar 

  8. M. Saito, R. Tanimura: Chem. Phys. Lett. 236, 156 (1995)

    Article  ADS  Google Scholar 

  9. R. Tanimura, M. Saito: Mol. Simul. 16, 75 (1996)

    Article  Google Scholar 

  10. D.L. Veenstra, P.A. Kollman: Protein Eng. 10, 789 (1997)

    Article  Google Scholar 

  11. W.F. van Gunsteren, A.E. Mark: Eur. J. Biochem. 204, 947 (1992)

    Article  Google Scholar 

  12. M. Saito: Mol. Simul. 8, 321 (1992)

    Article  Google Scholar 

  13. M. Saito: J. Chem. Phys. 101, 4055 (1994)

    Article  ADS  Google Scholar 

  14. M. Saito, H. Nakamura: J. Comp. Chem. 11, 76 (1990)

    Article  Google Scholar 

  15. M. Satio, to be submitted.

    Google Scholar 

  16. M. Saito, H. Kono, H. Morii, H. Uedaira, T.H. Tahirov, K. Ogata, A. Sarai, J. Phys. Chem. 104, 3705 (2000)

    Article  Google Scholar 

  17. C.L. Brooks III, M. Karplus, B.M. Pettitt: Proteins: A theoretical perspective of dynamics, structure, and thermodynamics. ( John Wiley & Sons, New York, 1988 ) p. 29

    Google Scholar 

  18. J.A. McCammon, B.R. Gelin, M. Karplus: Nature 267, 585 (1977)

    Article  ADS  Google Scholar 

  19. M. Levitt, R. Sharon: Proc. Natl. Acad. Sci. USA 85, 7557 (1988)

    Article  ADS  Google Scholar 

  20. M. Saito: J. Phys. Chem. 99, 17043 (1995)

    Article  Google Scholar 

  21. K. Yamasaki, M. Saito, M. Oobatake, S. Kanaya: Biochemistry 34, 6587 (1995)

    Article  Google Scholar 

  22. A.M. Mandel, M. Akke, A.G. Palmer III: J. Mol. Biol. 246, 144 (1995)

    Article  Google Scholar 

  23. P.A. Bash, U.C. Singh, R. Langridge, P.A. Kollman: Science 236, 564 (1987)

    Article  ADS  Google Scholar 

  24. D. Frenkel: in Molecular-Dynamics Simulation of Statistical-Mechanical Systems, ed. by G. Ciccotti, W. G. Hoover, ( North-Holland, Amsterdam, 1986 ) p. 151

    Google Scholar 

  25. C.H. Bennett: J. Comp. Phys. 22, 245 (1976)

    Article  ADS  Google Scholar 

  26. P.E. Smith, W.F. van Gunsteren: J. Phys. Chem. 98, 13735 (1994)

    Article  Google Scholar 

  27. L.X. Dang, K.M. Merz Jr., P.A. Kollman: J. Am. Chem. Soc. 111, 8505 (1989)

    Article  Google Scholar 

  28. S.Yun-yu, A.E. Mark, W. Cun-xin, H. Fuhua, H.J.C. Berendsen, W.F. van Gunsteren: Protein Eng. 6, 289 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saito, M. (2002). Accurate Calculations of Relative Melting Temperatures of Mutant Proteins by Molecular Dynamics/Free Energy Perturbation Methods. In: Taniguchi, Y., Stanley, H.E., Ludwig, H. (eds) Biological Systems Under Extreme Conditions. Biological and Medical Physics Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04802-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04802-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08528-4

  • Online ISBN: 978-3-662-04802-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics