The Small-Angle X-Ray Scattering from Proteins Under Pressure

  • Tetsuro Fujisawa
  • Minoru Kato
Part of the Biological and Medical Physics Series book series (BIOMEDICAL)


The overall solution structures of proteins under pressure were studied by using the synchrotron small-angle X-ray scattering (SAXS) technique. The measurements were made with a hydrostatic pressure cell with diamond windows, which enabled quantitative analysis of scattering profiles. Two applications were demonstrated: the pressure-induced denaturation of a monomeric protein, myoglobin, and the dissociation of an oligomeric protein, lactate dehydrogenase (LDH). Myoglobin showed sigmoid transition with a mid-point at 180 MPa. Denatured myoglobin at 300 MPa gave 20.9±0.9Å for the radius of gyration (Rg), which enabled quantitative comparison with different unfolding states. Pressure-denatured myoglobin at acidic pH was much more compact than myoglobin in urea-induced unfolded state and even more compact than myoglobin in a molten globule state. LDH consists of four identical subunits. Forward scattering, I(0)/C, which is proportional to molecular weight, showed that LDH dissociated into not monomers but dimer subunits with applied pressure. The conformational drift was confirmed by the value of Rg. There is little structural difference between native and drifted LDH. The presence of five scattering peaks in the medium-angle region indicates the dissociated dimer does not take a molten-globule-like structure but instead a structure in which the core is retained. The analysis of SAXS profiles under high pressure enabled modeling of the orientation of dimer subunits, which seems to be chosen so as to reduce the volume without disrupting the core structure.


Denature State Oligomeric Protein SAXS Measurement Staphylococcal Nuclease Guinier Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    G. Cevc, D. Marsh: Phospholipid Bilayers ( John Wiley and Sons Inc., NewYork, 1987 )Google Scholar
  2. 6.2
    R. Winter. Boettner: in High Pressure Chemistry, Biochemistry and Materials Science, ed. by R. Winter, J. Jonas ( Kluwer Academic Publishers, Dordrecht 1993 )CrossRefGoogle Scholar
  3. 6.3
    M. Kato, T. Fujisawa, J.Synchr. Rad., 5, 1282 (1998)CrossRefGoogle Scholar
  4. 6.4
    K Suzuki, Y. Miyosawa, C. Suzuki, Arch.Biochem.Biophys. 101, 225 (1963)CrossRefGoogle Scholar
  5. 6.5
    J.F. Brandts, R.J. Oliveira, C. Westort, Biochemistry, 9, 1038 (1970)CrossRefGoogle Scholar
  6. 6.6
    S.A. Hawley, Biochemistry, 10, 2436 (1971)CrossRefGoogle Scholar
  7. 6.7
    A. Zipp, W. Kauzmann, Biochemistry, 12 4217 (1973)CrossRefGoogle Scholar
  8. 6.8
    T. Taniguchi, K. Suzuki, J.Phys.Chem., 87, 5185 (1983)CrossRefGoogle Scholar
  9. 6.9
    P.T.T. Wong, K. Heremans, Biochim.Biophys.Acta, 956, 1 (1988)CrossRefGoogle Scholar
  10. 6.10
    S.D. Samarasinghe, D.M. Campbell, A. Jonas, J. Jonas, Biochemistry, 31 7773 (1992)CrossRefGoogle Scholar
  11. 6.11
    M. Kataoka, Y. Goto, Folding and Design 1, R107 and references cited therin, 1996Google Scholar
  12. 6.12
    M. Kato, T. Fujisawa, Y. Taniguchi, T. Ueki, Biophysics, 34 (Suppl.), 61 (1994)CrossRefGoogle Scholar
  13. 6.13
    R.Kleppinger, K.Goossens, K.Heremans, M.Lorenzen, in High Pressure research in Bioscience and Biotechnology, ed. by K.Heremans ( Leuven University Press, Leuven 1997 ) pp. 135Google Scholar
  14. 6.14
    M. Lorenzen, S. Fiedler, ibid, pp. 139 (1997)Google Scholar
  15. 6.15
    G. Panick, R. Malessa, R. Winter, G. Rapp, K.J. Frye, C.A. Royer, J.Mol.Biol., 275, 389 (1998)CrossRefGoogle Scholar
  16. 6.16
    M. Kataoka, I. Nishii, T. Fujisawa, T. Ueki, F. Tokunaga, Y. Goto, J.Mol.Biol., 249, 215 (1995)CrossRefGoogle Scholar
  17. 6.17
    L. King, G. Weber, Biochemistry, 25, 3632 (1986)CrossRefGoogle Scholar
  18. 6.18
    L. King, G. Weber, Biochemistry, 25, 3637 (1986)CrossRefGoogle Scholar
  19. 6.19
    T. Fujisawa, M. Kato, Y. Inoko, Biochemistry, 38, 6411 (1999)CrossRefGoogle Scholar
  20. 6.20
    L.A. Feigin, D.I. Svergun, Structure Analysis by Small-Angle X-ray and Neutron Scattering ( Plenum Press, NewYork 1987 )Google Scholar
  21. 6.21
    A. Guinier, G. Fournet, Small-Angle Scattering of X-rays ( John Wiley and Sons Inc., NewYork, 1955 )Google Scholar
  22. 6.22
    K. Gekko, Y. Hasegawa, Biochemistry, 25, 6563 (1986)CrossRefGoogle Scholar
  23. 6.23
    T. Ueki, Y. Hiragi, M. Kataoka, Y. Inoko, Y. Amemiya, Y. Izumi, H. Tagawa, Y. Muroga, Biophys. Chem., 23, 115 (1985)CrossRefGoogle Scholar
  24. 6.24
    T. Fujisawa, T. Uruga, Z. Yamaizumi, Y. Inoko, S. Nishimura, T. Ueki, J.Biochem., 115, 875 (1994)Google Scholar
  25. 6.25
    P.B. Moore, J.Appl.Cryst. 13 168 (1980)CrossRefGoogle Scholar
  26. 6.26
    D.I. Svergun, A.V. Semenyuk, L.A. Feigin, Acta Cryst. Sect. A 44, 244 (1988)Google Scholar
  27. 6.27
    D. Svergun, C. Baberato, M.H.J. Koch, J.Appl.Cryst., 28, 768 (1995)CrossRefGoogle Scholar
  28. 6.28
    M. Gerstein, J. Tsai, M. Levitt, J.Mo1.Bio1., 249, 955 (1995)CrossRefGoogle Scholar
  29. 6.29
    Y. Harpaz, M. Gerstein, C. Cothia, Structure 2, 641 (1994)CrossRefGoogle Scholar
  30. 6.30
    C.E. Kundrot, F.M. Richards, J.Mo1.Biol., 193, 157 (1987)CrossRefGoogle Scholar
  31. 6.31
    M. Gross, R. Jearnicke, Eur.J.Biochem., 221, 617 (1994)CrossRefGoogle Scholar
  32. 6.32
    V.V. Mozhaev, K. Heremans, J. Frank, P. Masson, C. Balny, Proteins 24, 81 (1996)CrossRefGoogle Scholar
  33. 6.33
    D.I. Svergun, S. Richard, M.H. Koch, Z. Sayers, S. Kuprin, G. Zaccai, Proc. Natl. Acad. Sci. USA 95, 2267 (1998)ADSCrossRefGoogle Scholar
  34. 6.34
    J.F. Flanagan, M.Kataoka, T.Fujisawa, D.Engelman, Biochemistry 32, 10359 (1993)CrossRefGoogle Scholar
  35. 6.
    R. Jaenicke, Naturwissenschaften 70, 332 (1983) and references cited therinGoogle Scholar
  36. 6.36
    K.Gekko, S.N. Timasheff, Biochemistry, 20, 4667 (1981)Google Scholar
  37. 6.37
    J. Monod, J. Wyman, J.P. Changeux, J.Mol.Bio1. 12, 88 (1965)CrossRefGoogle Scholar
  38. 6.38
    U.M. Grau, M.G. Rossmann, Biochemistry 17, 4 (1978)CrossRefGoogle Scholar
  39. 6.39
    C. Abad-Zapatero, J.P. Griffith, J.L. Sussman, M.G. Rossmann, J.Mol.Biol., 198, 445 (1987)CrossRefGoogle Scholar
  40. 6.40
    T. Ueki, Y. Inoko, M. Kataoka, Y. Amemiya, Y. Hiragi, J.Biochem, 99, 1127 (1986)Google Scholar
  41. 6.41
    X. Peng, J. Jonas, J. Silvia, Proc. Natl. Acad. Sci. USA 90, 1776 (1993)ADSCrossRefGoogle Scholar
  42. 6.42
    T. Fujisawa, K. Inoue, T. Oka, H. Iwamoto, T. Uruga, T. Kumasaka, Y. Inoko, N. Yagi, J.Appl.Cryst. 33, 797 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Tetsuro Fujisawa
    • 1
  • Minoru Kato
    • 2
  1. 1.Structural Biochemistry LaboratoryRIKEN Harima Institute/ Spring-8Mikazuki, Sayo, HyogoJapan
  2. 2.Department of Chemistry, Faculty of Science and EngineeringRitsumeikan UniversityKusatsu, ShigaJapan

Personalised recommendations