Skip to main content

Ab Initio Theoretical Study of Water: Extension to Extreme Conditions

  • Chapter
Biological Systems Under Extreme Conditions

Part of the book series: Biological and Medical Physics Series ((BIOMEDICAL))

  • 245 Accesses

Abstract

The electronic, liquid structure of water and its thermodynamic properties including the ionic product (pK w) are studied over a wide range of temperatures and densities based on ab initio molecular orbital theory combined with the integral equation method for a molecular liquid. For the neat liquid system, it is found that the molecular dipole moments and electronic polarization energies of a water molecule decrease with increasing temperature and/or density, being in quantitative accord with the experimental data determined based on the NMR chemical shift coupled with molecular dynamics simulation. The temperature and density dependence of the number of hydrogen-bonds is discussed in terms of the liquid structure of water. The pK w obtained from the theory shows a monotonical decrease with increasing density at all the temperatures investigated, in good accord with experimental observation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Franks: Water: A Complehensive Treatise ( Plenum, New York 1972 )

    Google Scholar 

  2. J. D. Bernal, R.H. Fowler, J. Chem. Phys. 1, 515 (1933)

    Article  ADS  Google Scholar 

  3. W.E. Thiessen, A.H. Narten, J. Chem. Phys. 77, 2656 (1982)

    Article  ADS  Google Scholar 

  4. J.A. Pople, Proc. R. Soc. A 205, 163 (1951)

    Article  ADS  MATH  Google Scholar 

  5. O.Y. Samoilov: Structure of aqueous electrolyte solutions and the hydration of ions, ( Consultants Bureau, New York 1965 )

    Google Scholar 

  6. G. Némethy, H.A. Scheraga, J. Chem. Phys. 36, 3382 (1962);

    Article  ADS  Google Scholar 

  7. G. Némethy, H.A. Scheraga, ibid 41, 680 (1964)

    Google Scholar 

  8. A. Ben-Naim, J. Chem. Phys. 52, 5531 (1970);

    Article  ADS  Google Scholar 

  9. A. Ben-Naim, ibid 54, 3682 (1971)

    Google Scholar 

  10. F. Hirata, Bull. Chem. Soc. Jpn. 50, 1032 (1977)

    Article  Google Scholar 

  11. D. Chandler, H.C. Andersen, J. Chem. Phys. 57, 1930 (1972);

    Article  ADS  Google Scholar 

  12. F. Hirat, P. J. Rossky, Chem. Phys. Lett. 84, 329 (1981);

    Article  ADS  Google Scholar 

  13. B. M. Pettitt, P. J. Rossky, J. Chem. Phys. 77, 1452 (1982)

    Article  Google Scholar 

  14. G.N. Patey, S. L. Carnie, J. Chem. Phys. 78, 5183 (1983);

    Article  ADS  Google Scholar 

  15. G.N. Patey, S. L. Carnie, ibid 79, 4468 (1983)

    Google Scholar 

  16. T. Ichiye, A. D. J. Haymet, J. Chem. Phys. 89, 4315 (1988);

    Article  ADS  Google Scholar 

  17. T. Ichiye, A. D. J. Haymet, ibid 93, 8954 (1990)

    Google Scholar 

  18. F. Hirata, Bull. Chem. Soc. Jpn. 71, 1483 (1998)

    Article  Google Scholar 

  19. S. Tenno, F. Hirata, S. Kato, J. Chem. Phys. 100, 7443 (1994);

    Article  ADS  Google Scholar 

  20. S. Tenno, F. Hirata, S. Kato, Chem. Phys. Lett. 214, 391 (1993)

    Article  ADS  Google Scholar 

  21. H. Sato, F. Hirata, S. Kato, J. Chem. Phys. 105, 1546 (1996)

    Article  ADS  Google Scholar 

  22. S. Maw, H. Sato, S. Tenno, F. Hirata, Chem. Phys. Lett. 276, 20 (1997);

    Google Scholar 

  23. H. Sato, F. Hirata, J. Chem. Phys., 111, 8545 (1999).

    Article  ADS  Google Scholar 

  24. J.K. Gregory, D.C. Clary, K. Liu, M.G. Brown, R.J. Saykally, Science 275, 814 (1997)

    Article  Google Scholar 

  25. N. Matubayasi, C. Wakai, M. Nakahara, Phys. Rev. Lett. 78, 2573 (1997);

    Article  ADS  Google Scholar 

  26. N. Matubayasi, C. Wakai, M. Nakahara, J. Chem. Phys. 107, 9133 (1997);

    Article  ADS  Google Scholar 

  27. N. Matubayasi, C. Wakai, M. Nakahara, J. Chem. Phys. 110, 8000 (1999)

    Article  ADS  Google Scholar 

  28. M. Nakahara, T. Yamaguchi, H. Ohtaki, Recent. Res. Dev. Phys. Chem. 1, 17 (1997)

    Google Scholar 

  29. T. Radnai, H. Ohtaki, Mol. Phys. 87, 103 1996 )

    Article  ADS  Google Scholar 

  30. R. D. Mountain, J. Chem. Phys. 90, 1866 (1989);

    Article  ADS  Google Scholar 

  31. R. D. Mountain, ibid 103, 3084 (1995)

    Google Scholar 

  32. W. B. Holzapfel, J. Chem. Phys. 50, 4424 (1969)

    Article  ADS  Google Scholar 

  33. A. S. Quist, W. L. Marshall, J. Phys. Chem. 69, 3165 (1965);

    Article  Google Scholar 

  34. A. S. Quist, ibid, 74, 3396 (1970)

    Google Scholar 

  35. G. Corongiu, E. Oementi, J. Chem. Phys. 97, 2030 (1992)

    Article  ADS  Google Scholar 

  36. F. J. Luque, S. R. Gadre, P. K. Bhadane, M. Orozco, Chem. Phys. Lett. 232, 509 (1995);

    Article  ADS  Google Scholar 

  37. F. R. Tortonda, J.-L. Pascual-Ahuir, E. Silla, I. Tunón, J. Phys. Chem. 97, 11087 (1993);

    Article  Google Scholar 

  38. F. R. Tortonda, J.-L. Pascual-Ahuir, E. Silla, I. Tunón, J. Phys. Chem. 99, 12525 (1995)

    Article  Google Scholar 

  39. M. Tuckerman, K. Laasonen, M. Sprik, M. Parinello, J. Phys. Chem. 99, 5749 (1995)

    Article  Google Scholar 

  40. H. Sato, F. Hirata, J. Phys. Chem. A 102, 2603 (1998).

    Google Scholar 

  41. H. Sato, F. Hirata, J. Phys. Chem. B 103, 6596 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirata, F., Sato, H. (2002). Ab Initio Theoretical Study of Water: Extension to Extreme Conditions. In: Taniguchi, Y., Stanley, H.E., Ludwig, H. (eds) Biological Systems Under Extreme Conditions. Biological and Medical Physics Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04802-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04802-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08528-4

  • Online ISBN: 978-3-662-04802-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics