The Effect of Hydrostatic Pressure on the Survival of Microorganisms

  • Horst Ludwig
  • Günter van Almsick
  • Christian Schreck
Part of the Biological and Medical Physics Series book series (BIOMEDICAL)


The sensitivity to elevated hydrostatic pressure is investigated for different bacterial species. Dependent on the species, a minimal pressure between 100 and 350 MPa is necessary for inactivation. The most sensitive cells are bacteria of oblong shape, the most resistant are cocci. The cell wall does not stabilize vegetative bacteria against pressure. Details of the kinetics of inactivation point to proteins as being the targets of pressure’s action. Other features suggest that the membrane plays a role. The latter aspect is substantiated by staining experiments and electron microscopy. Thus, it seems a likely supposition that inactivation of vegetative bacteria is caused by the damage of membrane proteins.


Hydrostatic Pressure Serratia Marcescens High Hydrostatic Pressure Mycoplasma Pneumoniae Inactivation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 12.1
    A. Certes: Compt. Rend. 98, 690 (1883)Google Scholar
  2. 12.2
    A. Certes: Compt. Rend. 99, 385 (1884)Google Scholar
  3. 12.3
    P. Rogers: Arch. Physiol. Normale Pathol. 7, 12 (1895)Google Scholar
  4. 12.4
    G.W. Chlopin, G. Tamman, Z. Hyg. Infektionskrankh. 45, 171 (1903)Google Scholar
  5. 12.5
    B.H. Hite: Bull. W. Virginia Univ. Agric. Expt. Sta. 146, 1 (1914)Google Scholar
  6. 12.6
    J. Basset, S. Nicolau, M.A. Macheboeuf, Compt. Rend. 200, 1882 (1935)Google Scholar
  7. 12.7
    J. Basset, A. Gratia, M.A. Macheboeuf, P. Manil, Proc. Soc. Expt. Biol. Med., 38, 248 (1938)Google Scholar
  8. 12.8
    W.P. Larson, T.B. Hartzell, H.S. Diehl, J. Infect. Dis. 22, 271 (1918)CrossRefGoogle Scholar
  9. 12.9
    G.W. Gould, A.J.H. Sale, in The Effects of Pressure on Organisms, Symposia of the Society for Experimental Biology, ed. by M.A. Sleigh, A.G. Macdonald 26 ( Cambridge University Press, Cambridge 1972 ) pp. 147Google Scholar
  10. 12.10
    B. Sojka, H. Ludwig, Pharm. Ind. 56, 660 (1994)Google Scholar
  11. 12.11
    B. Sojka, H. Ludwig, Pharm. Ind. 59, 355 (1997)Google Scholar
  12. 12.12
    B. Sojka, H. Ludwig, Pharm. Ind. 59, 436 (1997)Google Scholar
  13. 12.13
    A.M. Zimmerman (ed.) High Pressure Effects on Cellular Processes ( Academic Press, New York and London 1970 )Google Scholar
  14. 12.14
    M.A. Sleigh, A.G. Macdonald (eds.) The Effects of Pressure on Organisms ( Cambridge University Press, Cambridge 1972 )Google Scholar
  15. 12.15
    H.W. Jannasch, R.E. Marquis, A.M. Zimmerman (eds.) Current Perspectives in High Pressure Biolog Biology ( Academic Press, London 1987 )Google Scholar
  16. 12.16
    P.B. Bennet, I. Demchenko, R.E. Marquis (eds.) High Pressure Biology and Medicine ( University of Rochester Press, Rochester 1998 )Google Scholar
  17. 12.17
    R. Hayashi, in Engineering and Food, ed. by W.E.L. Spiess, H. Schubert ( Elsevier Appl. Sc., Amsterdam 1989 ) pp. 815Google Scholar
  18. 12.18
    C. Balny, R. Hayashi, K. Heremans, P. Masson (eds.) High Pressure and Biotechnology 224, ( Coll. Ins. John Libbey Eurotext, Montrouge 1992 )Google Scholar
  19. 12.19
    R. Hayash, C. Balny (eds.) High Pressure Bioscience and Biotechnology, Progress in Biotechnology 13 ( Elsevier, Amsterdam 1996 )Google Scholar
  20. 12.20
    K. Heremans (ed.) High Pressure Research in the Biosciences and Biotechnology ( Leuven University Press, Leuven 1997 )Google Scholar
  21. 12.21
    N. S. Isaacs (ed.) High Pressure Food Science, Bioscience and Chemistry ( The Royal Society of Chemistry, Cambridge, 1998 )Google Scholar
  22. 12.22
    H. Ludwig (ed.) Advances in High Pressure Bioscience and Biotechnology ( Springer, Berlin Heidelberg 1999 )Google Scholar
  23. 12.23
    P. Butz, J. Ries, U. Traugott, H. Weber, H. Ludwig, Pharm. Ind. 52, 487 (1990)Google Scholar
  24. 12.24
    H. B. Steen, M. W. Jernaes, K. Skarstad, E. Boye, Meth. Cell Biol. 42, 477 (1994)CrossRefGoogle Scholar
  25. 12.25
    C. Schreck, Dissertation, University of Heidelberg, 1998Google Scholar
  26. 12.
    C. Schreck, W. Herth, H. Ludwig, in preparationGoogle Scholar
  27. 12.27
    H. Ludwig, W. Scigalla, and B. Sojka, in High Pressure Effects in Molecular Biophysics and Enzymology, ed. by. J L. Markley, D.B. Northrop, C.A. Royer, ( Oxford University Press, Oxford 1996 ) pp. 346Google Scholar
  28. 12.28
    K. Miyagawa, K. Suzuki, Rev. Phys. Chem. Jpn. 32, 43 (1963)Google Scholar
  29. 12.29
    K. Miyagawa, K. Suzuki, Rev. Phys. Chem. Jpn. 32, 51 (1963)Google Scholar
  30. 12.30
    C. Schreck, G.van Almsick, H. Ludwig, in Processing of Foods: Quality Optimisation and Process Assessment, ed by F.A.R. Oliveira, J.C. Oliveira, Chapter 18 ( CRC Press, Boca Raton 1999 ) pp. 313Google Scholar
  31. 12.31
    H. Ludwig, C. Schreck, in High Pressure Research in the Biosciences and Biotechnology, ed. by K. Heremans ( Leuven University Press, Leuven 1997 ) pp. 221Google Scholar
  32. 12.32
    M.F. Patterson, M. Quinn, R. Simpson, A. Gilmour, in High Pressure Bioscience and Biotechnology, Progress in Biotechnology, ed. by R. Hayashi, C. Balny 13 ( Elsevier, Amsterdam 1996 ) pp. 267CrossRefGoogle Scholar
  33. 12.33
    H. Ludwig, P. Butz, H. Weber-Kühn, Deutsche Apotheker Zeitung 51 /52, 2774 (1990)Google Scholar
  34. 12.34
    K. Suzuki, Rev. Phys. Chem. Jpn. 29, 91 (1960)Google Scholar
  35. 12.35
    G. van Almsick, C. Schreck, H. Ludwig, in Basic and Applied High Pressure Biology IV, ed by J.-C. Rostain, A.G. Macdonald, R.E. Marquis 5 (Medsubhy p Int. 1995 ) pp. 69Google Scholar
  36. 12.36
    G. van Almsick, Dissertation, University of Heidelberg, 1997.Google Scholar
  37. 12.37
    H.M. Shapiro, Practical Flow Cytometry, 3rd ed. ( Wiley-Liss Inc., New York 1995 )Google Scholar
  38. 12.38
    J. P. P. M. Smelt, A.G.F. Rijke, A. Hayhurst, High Pressure Res. 12, 199 (1994)ADSCrossRefGoogle Scholar
  39. 12.39
    C. N. Cutter, G. R. Siragusa, J. Food Protect. 9, 977 (1995)Google Scholar
  40. 12.40
    C. A. Cherrington, M. Hinton, G. R. Pearson, I. Chopra, J. Appl. Bact. 70, 161 (1991)CrossRefGoogle Scholar
  41. 12.41
    K. Shimada, K. Shimahara, Agric. Biol. Chem. 12, 3605 (1985)CrossRefGoogle Scholar
  42. 12.42
    Y. Nitzan, M. Gutterman, Z. Malik, B. Ehrenberg, Photochem. Photobiol. 1, 89 (1992)CrossRefGoogle Scholar
  43. 12.43
    C. Schreck, G. Layh-Schmitt, H. Ludwig, Pharm. Ind., 61, 759 (1999);Google Scholar
  44. C. Schreck, G. Layh-Schmitt, H. Ludwig, Drugs made in Germany 42, 84 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Horst Ludwig
    • 1
  • Günter van Almsick
    • 1
  • Christian Schreck
    • 1
  1. 1.Institute for Pharmaceutical Technology and BiopharmacySection Physical ChemistryHeidelbergGermany

Personalised recommendations