Advertisement

Estimation Problems for a Crystallization Process Modelled by a Dynamic Germ-Grain Model

  • M. De Giosa
  • R. M. Mininni
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 1)

Abstract

A random dynamic germ-grain model Θ(t), t ≥ 0, in ℝ2 is studied and a product limit type estimator of the free volume fraction S(t) = P(0 ∉ Θ(t)) is proposed. A kernel function estimator of a parameter a involved in S is also suggested. Both the estimators satisfy Consistence and Asymptotic Normality properties. Confidence bands and intervals are provided. Numerical simulations of the model have been carried out to show the qualitative behaviour of the estimators.

Keywords

Asymptotic Normality Unbiased Estimator Confidence Band Boolean Model Functional Central Limit Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, P.K., Borgan, O., Gill, R.D., Keiding, N. (1997) Statistical Models Based on Counting Processes. Corr. 2nd print., Springer, Berlin Heidelberg New York.Google Scholar
  2. 2.
    Baddeley, A, Gill, R.D. (1997) Kaplan-Meier Estimators of Distance Distributions for Spatial Point Processes. Ann. Stat. 25 (1), 263–292.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Capasso, V., De Giosa, M., Micheletti, A., Mininni, R. (1996) Stochastic modelling and statistics of polymer crystallization processes. Surv. Math. Ind. 6, 109–132.MATHGoogle Scholar
  4. 4.
    De Giosa, M., Mininni, R. (2000) Some estimation problems in a dynamic germ-grain model. Rap. Dip. Mat. Univ. Bari 67 /2000.Google Scholar
  5. 5.
    Liptser, R.S., Shiryayev, A.N. (1980) A functional central limit theorem for semimartingales. Theory Prob. Appl. 25 (4), 667–688.MathSciNetGoogle Scholar
  6. 6.
    Schumacher, M. (1984) Two-sample tests of Cramer-von Mises and KolmogorovSmirnov type for randomly censored data. Int. Statist. Rev. 52, 263–281.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • M. De Giosa
    • 1
  • R. M. Mininni
    • 1
  1. 1.Dipartimento di MatematicaUniversità di BariBariItaly

Personalised recommendations