Recent Developments and Open Problems in Composites Materials Manufacturing

  • D. Ambrosi
  • A. Farina
  • L. Preziosi
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 1)

Abstract

Resin injection molding is the most widely used technique to produce composites. It consists in injecting a polymeric melt in a porous material, usually called solid preform. The solid preform is placed in a mould and the liquid constituent is injected through it. As the liquid front advances and impregnates the preform, it displaces the air that outflows from the mould through suitably located air vents. When the liquid constituent has solidified or is completely polymerized, the mould is opened and the composite materials is available for subsequent finishing operations. The structure of the preform can strongly differ from case to case: it can exhibit a sponge—like structures, or a knitted one, it can be made of fibers, bundles, or mats, and so on. In all these cases the infiltration process can be schematized as the flow of a liquid through a deformable porous material.

Keywords

Permeability Porosity Zirconium Total Heat Foam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosi, D., Preziosi, L. (1998) Modelling matrix injection through elastic porous preforms. Composites A, 29A, 5–18.CrossRefGoogle Scholar
  2. 2.
    Ambrosi, D., Preziosi, L. (2000) Modelling injection moulding processes with deformable porous preform. SIAM J. Appl. Math., 61, 22–42.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ambrosi, D. (2001) Infiltration through deformable porous media. ZAMM, 81, 1–10.Google Scholar
  4. 4.
    Bear, J., Bachmat, Y. (1990) Introduction to Modelling of Transport Phenomena in Porous Media. Kluwer.Google Scholar
  5. 5.
    Beavers, G.S., Joseph, D.D. (1967) Boundary conditions at a naturally permeable wall. J. Fluid Mech., 30, 197–207.CrossRefGoogle Scholar
  6. 6.
    Billi, L. and Farina, A. (2000) Unidirectional infiltration in deformable porous media: mathematical modelling and self-similar solution. Quart. Appl. Math., 43, 85–101.MathSciNetGoogle Scholar
  7. 7.
    Calhoun, D.R., Yalvac, S., Wetters, D.G., Wu C.H., Wang, T.J., Tsai, J.S., Lee, L.J. (1996) Mold filling analysis in resin transfer molding. Polymer Compos., 17, 251–264.CrossRefGoogle Scholar
  8. 8.
    Farina, A., Cocito, P., Boretto, G. (1997) Flow in deformable porous media: Modelling and simulations of the compression moulding process, Mathl. Comput. Modelling, 26, 1–15.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Farina, A., Preziosi, L. (2000) Infiltration processes in composite materials manufacturing: Modelling and qualitative results. In Complex Flows in Industrial Processes, Fasano A., Ed., Birkhäuser.Google Scholar
  10. 10.
    Farina, A., Preziosi, L. (2000) Deformable porous media and composite manufacturing. In Heterogeneous Media: Micromechanics, Modeling, Methods and Simulation, Markov K. and Preziosi L., Eds., Birkhäuser.Google Scholar
  11. 11.
    Farina, A., Preziosi, L. (2000) Non—isothermal injection moulding with resin cure and preform deformability. Composites A, 31, 1355–1372.CrossRefGoogle Scholar
  12. 12.
    Hammami, A., Gauvin, R., Trochu, F. (1998) Modeling the edge effect in liquid composites molding. Composites A, 29, 603–609.CrossRefGoogle Scholar
  13. 13.
    Han, K., Lee, L.J., Liu, M.J. (1993) Fiber mat deformation in liquid composite moulding. II: Modeling. Polymer Compos., 14, 151–160.CrossRefGoogle Scholar
  14. 14.
    Hornung, U. (1997) Homogenization and Porous Media. Springer.Google Scholar
  15. 15.
    Jäger, W., Mikelic, A. (1996) On the boundary conditions at the contact interface between a porous medium and a free fluid. Annali della Scuola Normale Superiore di Pisa, Serie IV, 23, 403–465.MATHGoogle Scholar
  16. 16.
    Liu, I.S. (1980) On chemical potential and incompressible porous media, J. Mec., 19, 327–342.Google Scholar
  17. 17.
    Long, S., Zhang, Z., Flower, H.M. (1995) Characterization of metal infiltration of a chopped fiber preform aided by external pressure. II. Modeling of liquid metal infiltration process, Acta Metall. Mater., 43, 3499–3509.CrossRefGoogle Scholar
  18. 18.
    Markov, K., Preziosi, L., Eds. (2000) Heterogeneous Media: Micromechanics, Modeling, Methods and Simulation. Birkhäuser.MATHGoogle Scholar
  19. 19.
    Mortensen, A., Cornie, J.A. (1987) On the infiltration of metal matrix composites. Metall. Trans. A, 18, 1160–1163.CrossRefGoogle Scholar
  20. 20.
    Müller, I. (1973) Thermodinamik, die Grundlagen der Material—Theorie. Bertelsmann Universitäs—Verlag.Google Scholar
  21. 21.
    Preziosi, L. (1996) The theory of deformable porous media and its applications to composite material manufacturing. Surv. Math. Ind., 6, 167–214.MathSciNetMATHGoogle Scholar
  22. 22.
    Rajagopal, K.R., Tao, L. (1995) Mechanics of Mixtures. World Scientific.Google Scholar
  23. 23.
    Rajagopal, K.R., Wineman, A.S., Gandhi, M.V. (1986) On boundary conditions for a certain class of problems in mixture theory. Int. J. Eng. Sci., 24, 14531463.Google Scholar
  24. 24.
    Saffman, P.G. (1971) On the boundary condition at the interface of a porous medium. Studies in Appl. Math., 1, 93–101.Google Scholar
  25. 25.
    Tao, L., Rajagopal, K.R. (1994) On boundary conditions in mixture theory. In Recent Advances in Elasticity and Viscoelasticity, Rajagopal K.R. Ed., World Scientific.Google Scholar
  26. 26.
    Trevino, L., Rupel, K., Young, W.B., Liu, M.J., Lee, L.J. (1991) Analysis of resin injection moulding in moulds with preplaced fiber mats. I: Permeability and compressibility measurements. Polymer Compos., 12, 20–29.CrossRefGoogle Scholar
  27. 27.
    Yamauchi, T., Nishida, Y. (1995) Infiltration kinetics of fibrous preforms by aluminum with solidification. Acta Metall. Mater., 43, 1313–1321.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • D. Ambrosi
    • 1
  • A. Farina
    • 2
  • L. Preziosi
    • 1
  1. 1.Dipartimento di MatematicaPolitecnico di TorinoTorinoItaly
  2. 2.Dipartimento di Matematica “U. Dini” VialeUniversità degli Studi di FirenzeFirenzeItaly

Personalised recommendations