High Resolution Nonoscillatory Central Difference Schemes for the 2D Euler Equations via Artificial Compression

  • K.-A. Lie
  • S. Noelle
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 1)

Abstract

We suggest to augment second-order, nonoscillatory, central difference schemes with Harten’s artificial compression method (ACM) to sharpen the resolution of linear fields. ACM employs a partial characteristic decomposition to single out the linear fields, for which a steeper reconstruction is applied. The remarkable power of this technique is demonstrated for three test problems for the Euler equations from gas dynamics, and its dangers are pointed out.

Keywords

Vortex Expense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lax P. (1954) Weak solutions of nonlinear hyperbolic equation and their numerical computation, Comm. Pure Appl. Math. 7, 159 - 193.MathSciNetMATHGoogle Scholar
  2. 2.
    Nessyahu H., Tadmor E. (1990) Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408-463Google Scholar
  3. 3.
    Harten A. (1983) High resolution schemes for hyperbolic conservation laws. J. Comp. Phys. 49, 357 - 393MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Arminjon P., Stanescu D., Viallon M.—C. (1995) A two-dimensional finite volume extension of the Lax—Friedrichs and Nessyahu—Tadmor schemes for compressible flows. In: Hafez M., Oshima K (Eds.) Proc. 6th. Int. Symp. on CFD, Lake Tahoe, Vol. IV, 7 - 14Google Scholar
  5. 5.
    Jiang G.—S., Tadmor E. (1998) Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (6), 1892 - 1917MathSciNetMATHGoogle Scholar
  6. 6.
    Lie K.—A., Noelle S. (2000) Remarks on high-resolution non-oscillatory central schemes for multi-dimensional systems of conservation laws. Part I: An improved quadrature rule for the flux-computation. Preprint no. 679, Sonderforshugsbereich 256, Rheinische Friedrich—Wilhelms—Unversitat, Bonn, Germany.Google Scholar
  7. 7.
    Schulz—Rinne C. W., Collins J. P., Glaz H. M. (1993) Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14 (6), 1394 - 1414MathSciNetGoogle Scholar
  8. 8.
    Woodward P., Colella P. (1984) The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115-173Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • K.-A. Lie
    • 1
  • S. Noelle
    • 2
  1. 1.SINTEF Applied MathematicsBlindern, OsloNorway
  2. 2.Institut für Geometrie und Praktische MathematikRWTH AachenAachenGermany

Personalised recommendations