Advertisement

Tunnel-Type GMR (TMR) Devices

  • Eiichi Hirota
  • Hirosi Sakakima
  • Koichiro Inomata
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 40)

Abstract

Tunneling magnetoresistance (TMR) is observed for ferromagnetic spin tunneling junctions (MTJ) consisting of ferromagnetic—insulator—ferromagnetic layers[1–3]. When the insulating layer, usually referred to as the barrier layer, is very thin (the order of 1 nm), electrons can tunnel through this forbidden region as a result of the wave-like nature of electrons for a voltage applied between the two electrodes, and can only be described in terms of quantum mechanics. The basic principle of TMR is the dependence of the tunneling probability on the relative orientation of magnetization in the two ferromagnetic electrodes. The tunneling conductance is spin dependent due to the spin dependent density of states (DOS) at the Fermi level for ferromagnets.

Keywords

Barrier Height Spin Polarization Tunneling Junction Magnetic Layer Ferromagnetic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Julliere: Phys. Lett. 54A, 225 (1975).CrossRefGoogle Scholar
  2. [2]
    T. Miyazaki and N. Tezuka: J. Magn. Magn. Mater. 139, L231 (1995).ADSGoogle Scholar
  3. [3]
    J. S. Moodera, L. R. Kinder, T. M. Wong and R. Meservey: Phys.Rev.Lett. 74, 3273 (1995).ADSCrossRefGoogle Scholar
  4. [4]
    S. Maekawa and U. Gafvert: IEEE Trans. Magn. MAG-18, 707 (1982).Google Scholar
  5. [5]
    P. M. Tedrow and R. Moservey: Phys. Rev. Lett. 26, 192 (1971).ADSCrossRefGoogle Scholar
  6. [6]
    R. J. Soulen Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry and J. M. D. Coey: Science, 282, 85 (1998).ADSCrossRefGoogle Scholar
  7. [7]
    S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuer-line, E. J. O’Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouillou, R. A. Wanner and W. J. Gallargher: J. Appl. Phys. 85, 5828 (1999).ADSCrossRefGoogle Scholar
  8. [8]
    R. Moservey and P. M. Tedrow: Phys. Rep. 238, 173 (1994).ADSCrossRefGoogle Scholar
  9. [9]
    J. G. Simmons: J. Appl.Phys. 35, 2655 (1964).ADSCrossRefGoogle Scholar
  10. [10]
    J. M. Teresa, A. Bathelemy, A. Fert, J. P. Cpnyour, R. Lyonner, F. Montaigne, P. Seneor and A. Vaures: Phys. Rev. Lett., 82, 4288 (1999).ADSCrossRefGoogle Scholar
  11. [11]
    H. Tsuge and T. Mitsuzuka: Appl. Phys. Lett. 71, 3296 (1997).ADSCrossRefGoogle Scholar
  12. [12]
    Yuasa et al.: Europhys. Lett., 52, 344 (2000).ADSCrossRefGoogle Scholar
  13. [13]
    W. J. Gallagher, S. S. P. Parkin, Y. Lu, X. P. Bian, A. Marley, K. P. Roche, R. A. Altman, S. Rishton, C. Jahnes, T. M. Shaw and G. Xiao: J. Appl. Phys. 81, 3741 (1997).Google Scholar
  14. [14]
    S. Cardoso, V. Gehanno, R. Ferreira and P. Freitas: IEEE Trans. Magn, 35, 2952 (1999).ADSCrossRefGoogle Scholar
  15. [15]
    M. Sato, H. Kikuchi and K. Kobayashi: J. Appl. Phys. 83, 6691 (1998).ADSCrossRefGoogle Scholar
  16. [16]
    M. G. Samant, J. Luning, J. Stohr and S. S. P. Parkin: Appl. Phys. Lett., 76, 3097 (2000).ADSCrossRefGoogle Scholar
  17. [17]
    T. Dimopoulos C. Tiusan, K. Ounadjela, M. Hehn, H. A. M. van den Berg, Y. Henry and V. da Costa: J. Appl. Phys. 87, 4685 (2000).ADSCrossRefGoogle Scholar
  18. [18]
    C. He Shang, J. Nowak, R. Jansen and J. S. Moodera: Phys. Rev. B58, R2917 (1998).ADSCrossRefGoogle Scholar
  19. [19]
    J. Zhang and R. M. White: J. Appl. Phys. 83, 6512 (1998).ADSCrossRefGoogle Scholar
  20. [20]
    J. S. Moodera, J. Nowak and R. J. M. van Veedonk: Phys. Rev. Lett., 80, 2941 (1998).ADSCrossRefGoogle Scholar
  21. [21]
    A. M. Bratkovsky: Phys. Rev. B56, 2344 (1997).ADSCrossRefGoogle Scholar
  22. [22]
    S. Zhang, P. Levy, A. C. Marley and S. S. P. Parkin: Phys. Rev. Lett., 79, 3744 (1997).ADSCrossRefGoogle Scholar
  23. [23]
    K. Inomata, Y. Saito, K. Nakajima and M. Sagoi: J. Appl. Phys. 87, 6064 (2000).ADSCrossRefGoogle Scholar
  24. [24]
    Y. Saito, K. Nakajima, K. Tanaka and K. Inomata: IEEE Trans. Magn. 35, 2904 (1999).ADSCrossRefGoogle Scholar
  25. [25]
    Y. Saito, M. Amano, K. Nakajima, S. Takahashi, M. Sagoi and K. Inomata: IEEE Trans Magn. (2001) in press.Google Scholar
  26. [26]
    K.Shimazawa, O.Redon, N.Kasahara, J.Sun, H.Morita, and M.Matsuzaki; Digest of Intermag 2000 FA-01 (2000).Google Scholar
  27. [27]
    D.Song, J.Nowak, R.Larson, P.Kolbo, R.Chellew; Digest of Intermag 2000 FA-02 (2000).Google Scholar
  28. [28]
    K.Hayashi, E.Fukami, K.Nagahara, M.Nakada, K.Ohashi; Digest of Inter ag 2000 FA-03 (2000).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Eiichi Hirota
    • 1
  • Hirosi Sakakima
    • 1
  • Koichiro Inomata
    • 2
  1. 1.Advanced Technology Reserach LaboratoriesMatushita Electric Industrial Co., Ltd.Seika, Souraku, KyotoJapan
  2. 2.Department of Materials ScienceTohoku UniversityAramaki, Aoba-ku, SendaiJapan

Personalised recommendations