Skip to main content
  • 539 Accesses

Abstract

The Reynolds number of flow

$$ Re = \frac{{\nu *L*}}{{v*}} $$
(2.1)

gives a measure of the importance of inertial related to viscous forces. Experiments show that all flows become unstable above a certain Reynolds number. Below values of the so-called critical Reynolds number Re crit the flow is smooth and adjacent layers of fluid slide past each other in an orderly regime. This regime is called laminar flow. At Reynolds numbers larger than the critical value a complicated series of physical events takes place which eventually result in a radical change of the flow behavior. Finally, the flow becomes turbulent, i. e. velocity and other flow properties become chaotic and random. The flow is then unsteady even with constant boundary conditions. Turbulence is a kind of a chaotic and random state of motion. Nevertheless, velocity and pressure vary continuously with time within substantial regions of flow. Velocity fluctuations associated with turbulence give rise to additional stresses on the fluid — so-called Reynolds stresses. Examples of turbulent flows are: free turbulent flows (jet flow), turbulent boundary layer flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolditz, O. (2002). Turbulence. In: Computational Methods in Environmental Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04761-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04761-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07683-1

  • Online ISBN: 978-3-662-04761-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics