Skip to main content

Abstract

This chapter deals with theory and computation of fluid flow in fractured rock. Non-Darcian flow behavior was observed in pumping tests at the geothermal research site at Soultz-sous-Forêts (France). Examples are examined to demonstrate the influence of fracture roughness and pressure-gradient dependent permeability on pressure build-up. A number of test examples based on classical models by Darcy (1856), Blasius (1913), Nikuradse (1930), Lomize (1951) and Louis (1967) are investigated, which may be suited as benchmarks for nonlinear flow. This is a prelude of application of the non-linear flow model to real pumping test data. Frequently, conceptual models based on simplified geometric approaches are used. Here, a realistic fracture network model based on borehole data is applied for the numerical simulations. The obtained data fit of the pumping test shows the capability of fracture network models to explain observed hydraulic behavior of fractured rock systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bear, J. (1972), Dynamics of fluids in porous media, American Elsevier.

    Google Scholar 

  2. Blasius, H. (1913), Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, Forsch. Ing.-Wesen, VDI-Heft 131.

    Google Scholar 

  3. Barenblatt, G.I., Entov, V.M. & Ryzhik, V.M. (1990), Theory of fluid flows through natural rocks, Kluwer Academic Publishers.

    Google Scholar 

  4. Brown, S.R. (1987), “Fluid flow through rock joints: The effect of surface roughness”, J Geophysical Research, Vol. 92, No. B2, pp. 1337–1347.

    Article  Google Scholar 

  5. Busch, K.-F., Luckner, L. & Thiemer, K. (1993), Geohydraulik, In: Matthess, G. (Hrsg.), Lehrbuch der Hydrogeologie, Band 3, Gebrüder Borntraeger Verlag, Berlin — Stuttgart.

    Google Scholar 

  6. Couland, O., Morel, P, & Caltagirone, J.-P. (1986), “Effects non lineaires dans les ecoulements en milieu poreux”, C.R. Acad. Sci., ser. 2, vol 302, pp. 263–266.

    Google Scholar 

  7. Darcy, H. (1856), Les fontaines publiques de la ville de Dijon, Dalmont, Paris.

    Google Scholar 

  8. Diersch, H.-J. G. (1985), Modellierung und numerische Simulation geohydrody-namischer Transportprozesse, Habilitationsschrift, Akademie der Wissenschaften der DDR, Berlin.

    Google Scholar 

  9. Dullien, F.A.L. (1979), Porous media, fluid transport and pore structure, Academic Press, New York.

    Google Scholar 

  10. Dybbs, A. & Edwards, R.V. (1984), A new look at porous media fluid mechanics — Darcy to turbulent, in Bear & Corapcioglu (eds), Fundamentals of transport phenomena in porous media, pp. 201-256. Dordrecht Publisher.

    Google Scholar 

  11. Forchheimer, P. (1914), Hydraulik, Teubner Verlag, Berlin-Leipzig.

    MATH  Google Scholar 

  12. Häfner, F. (1985), Geohydrodynamische Erkundung von Erdöl-, Erdgas-und Grundwasserlagerstätten, Wissenschaftlich-Technischer Informationsdienst des Zentralen Geologischen Instituts, Vol. 26, Berlin.

    Google Scholar 

  13. Jung, R., Willis-Richards, J., Nicholls, J.D., Bertozzi, A. & Heinemann, B. (1995), “Evaluation of hydraulic test at Soultz — European HDR site”, In: Proc. Worlds Geothermal Congress, pp. 2575-2580, Florenz.

    Google Scholar 

  14. Kaiser, R., Kolditz, O. & Rother, T. (1999), “Modelling of flow in fractured aquifers using automatic grid adaptation”, In: Proc. XXVIII IAHR Conference on Hydraulic Engineering for Sustainable Water Resources Management, Graz.

    Google Scholar 

  15. Kohl, T., Evans, K.F., Hopkirk, R.J., Jung, R. & Rybach, L. (1997), “Observation and Simulation of non-Darcian flow transients in fractured rock”, Water Res. Research, Vol. 33 No. 3, pp. 407–418.

    Article  Google Scholar 

  16. Kolditz, O. (1997), Strömung, Stoff-und Wärmetransport im Kluftgestein, Borntraeger Verlag, Berlin-Stuttgart.

    Google Scholar 

  17. Kolditz, O. & Clauser, C. (1998): “Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to the hot dry rock site at Rosemanowes (UK)”, Geothermics, 27(1): 1–23.

    Article  Google Scholar 

  18. Kolditz, O., Habbar, A., Kaiser, R., Rother, T.& Thorenz, C. (1999), ROCK-FLOW — Theory and Users Manual, Release 3.4, Groundwater Modeling Group, Institute of Fluid Mechanics, University of Hannover, (www.rockflow.de).

    Google Scholar 

  19. Lamb, H. (1932), Hydrodynamics, Cambridge University Press.

    Google Scholar 

  20. Lewis R W & Schrefler B A (1998): The finite element method in the static and dynamic deformation and consolidation of porous media, Wiley & Sons.

    Google Scholar 

  21. Lomize, G.M. (1951), Seepage in fissured rocks, State Press, Moscow-Leningrad.

    Google Scholar 

  22. Louis, C. (1967), Strömungsvorgänge in klüftigen Medien und ihre Wirkung auf die Standsicherheit von Bauwerken und Böschungen im Fels, Mitteilungen des Instituts für Boden-und Felsmechanik, Heft 23, Universität Karlsruhe.

    Google Scholar 

  23. Moreno, L., Tsang, Y.W., Tsang, C.F., Hale, F.V. & Neretnieks, I. (1988), “Flow and tracer transport in a single fracture: A stochastic model and its relation to some field observations”, Water Res. Research, Vol. 24 No. 12, pp. 2033–2048.

    Article  Google Scholar 

  24. Nikuradse, J. (1930), “Turbulente Strömungen in nicht-kreisförmigen Rohren”, Ing. Arch., Vol. 1, pp. 306–332.

    Article  MATH  Google Scholar 

  25. Pinder, G.F. & Gray, W.G. (1977), Finite element simulation in surface and subsurface hydrology, Academic Press, New York-London.

    Google Scholar 

  26. Pribnow, D. & Clauser, C. (1999), Heat and fluid flow in the Rhein graben: Regional and local models for a HDR system, Technical Report, Institut für Geowissenschaftliche Gemeinschaftsaufgaben (GGA)

    Google Scholar 

  27. Romm, E.S. (1966), Seepage properties of fractured rock, (in Russian), Nedra Publisher, Moscow.

    Google Scholar 

  28. Rother, T., Kolditz, O., Zielke, W. & Taniguchi, T. (2000), Geometric analysis of fractured-porous aquifers, Rockflow-Preprint [2000–3], Groundwater Modeling Group, Institute of Fluid Mechanics, University of Hannover, accepted for publication by J Environmental Geology.

    Google Scholar 

  29. Scheidegger A. E. (1974), The physics of flow through porous media, University of Toronto Press, 3rd edition.

    Google Scholar 

  30. Tsang, Y.W. (1992), “Usages of equivalent apertures for rock fractures as derived from hydraulic and tracer tests”, Water Res. Research, Vol. 28 No. 5, pp. 1451–1455.

    Article  Google Scholar 

  31. Witherspoon, P.A., Wang, J.S.Y., Iwai, K. & Gale, J.E. (1980), “Validity of cubic law for fluid flow in a deformable rock fracture”, Water Res. Research, Vol. 16 No. 6, pp. 1016–1024.

    Article  Google Scholar 

  32. Zielke, W. (1990), Strömungsmechanik für Bauingenieure, Eigenverlag, Institut für Strömungsmechanik, Universität Hannover.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolditz, O. (2002). Non-Linear Flow in Fractured Media. In: Computational Methods in Environmental Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04761-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04761-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07683-1

  • Online ISBN: 978-3-662-04761-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics