SNAPping Up Functionally Related Genes Based on Context Information: A Colinearity-Free Approach

  • G. Kolesov
  • H. -W. Mewes
  • D. Frishman
Conference paper
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 38)


Computer-assisted functional assignment of gene products traditionally involves identifying a significant resemblance to an experimentally characterized protein or sequence motif. Due to the constant improvement of the sequence comparison techniques, reliable recognition of extremely distant relationships between proteins has become possible. At the same time, further progress in this direction is becoming increasingly difficult, following the rule of diminishing returns — improvements of ever smaller significance require ever growing effort and sophistication. Consequently, the quest to develop complementary, similarity-free computational approaches to elucidate gene function has been triggered. For example, methods based on the linguistic analysis of textual sequence annotation and scientific literature (reviewed in Andrade and Bork 2000) and correlating protein amino acid composition with enzyme nomenclature (des Jardins 1997) have been explored.


Basic Local Alignment Search Tool Functional Coupling Query Gene Carbohydrate Utilization Pathway Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402PubMedCrossRefGoogle Scholar
  2. Andrade MA, Bork P (2000) Automated extraction of information in molecular biology. FEBS Lett 476: 12–17PubMedCrossRefGoogle Scholar
  3. Bansal AK (1999) An automated comparative analysis of 17 complete microbial genomes. Bioinformatics 15: 900–908PubMedCrossRefGoogle Scholar
  4. Blattner FR, Plunkett III G, Bloch CA, et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1462PubMedCrossRefGoogle Scholar
  5. Blumenthal T, Spieth J (1996) Gene structure and organization in Caenorhabditis elegans. Curr Opin Genet Dev 6: 692–698PubMedCrossRefGoogle Scholar
  6. Craven M, Page D, Shavlik J, Bockhorst J, Glasner J (2000) A probabilistic learning approach to whole-genome operon prediction. Proc Int Conf Intell Syst Mol Biol 8: 116–127PubMedGoogle Scholar
  7. Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23: 324–328PubMedCrossRefGoogle Scholar
  8. de La Cruz I, Davies I (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8: 128–133PubMedCrossRefGoogle Scholar
  9. des Jardins M, Karp PD, Krummenacker M, Lee TJ, Ouzounis CA (1997) Prediction of enzyme classification from protein sequence without the use of sequence similarity. ISMB 5: 92–9PubMedGoogle Scholar
  10. Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402: 86–90PubMedCrossRefGoogle Scholar
  11. Felsenstein J (1989) PHYLIP — phylogeny inference package. Cladistics 5: 164–166Google Scholar
  12. Frishman D, Mewes HW (1997) PEDANTic genome analysis. Trends Genet 13: 415–416CrossRefGoogle Scholar
  13. Frishman D, Albermann K, Hani J, Heumann K, Metanomski A, Zollner A, Mewes H-W (2000) Functional and structural genomics using PEDANT. Bioinformatics 17: 44–57CrossRefGoogle Scholar
  14. Huynen M, Snel B, Lathe III W, Bork P (2000) Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res 10: 1204–1210PubMedCrossRefGoogle Scholar
  15. Itoh T, Takemoto K, Mori H, Gojobori T (1999) Evolutionary instability of operon structures disclosed by sequence comparisons of complete microbial genomes. Mol Biol Evol 16: 332–346PubMedCrossRefGoogle Scholar
  16. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30Google Scholar
  17. Koonin EV, Mushegian AR, Bork P (1996) Non-orthologous gene displacement. Trends in Genetics 12: 334–336PubMedCrossRefGoogle Scholar
  18. Lathe WC, Snel B, Bork P (2000) Gene context conservation of a higher order than operons. Trends Biochem Sci 25: 474–479PubMedCrossRefGoogle Scholar
  19. Lawrence JG, Roth JR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143: 1843–1860PubMedGoogle Scholar
  20. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402: 83–86PubMedCrossRefGoogle Scholar
  21. Mewes HW, Albermann K, Bahr M, Frishman D, Gleissner A, Hani J, Heumann K, Kleine K, Maierl A, Oliver SG, Pfeiffer F, Zollner A (1997) Overview of the yeast genome. Nature 387: 7–65PubMedCrossRefGoogle Scholar
  22. Mushegian AR, Koonin EV (1996) Gene order is not conserved in bacterial evolution. Trends Genet 12: 289–290PubMedCrossRefGoogle Scholar
  23. Niehrs C, Pollet N (1999) Synexpression groups in eukaryotes. Nature 402: 483–487PubMedCrossRefGoogle Scholar
  24. Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1998) Use of contiguity on the chromosome to predict functional coupling. In Silico Biol 1: 0009Google Scholar
  25. Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96: 2896–2901PubMedCrossRefGoogle Scholar
  26. Ruepp A, Graml W, Santos-Martinez ML, Koretke KK, Volker C, Mewes HW, Frishman D, Stocker S, Lupas AN, Baumeister W (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407: 508–513PubMedCrossRefGoogle Scholar
  27. Tamames J, Casari G, Ouzounis C, Valencia A (1997) Conserved clusters of functionally related genes in two bacterial genomes. J Mol Evol 44:66–73 Watanabe H, Mori H, Itoh T, Gojobori T (1997) Genome plasticity as a paradigm of eubacteria evolution. J Mol Evol 44: S57 — S64Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • G. Kolesov
  • H. -W. Mewes
  • D. Frishman

There are no affiliations available

Personalised recommendations