Harmonic Analysis and Hecke Operators



We first construct new uniform pointwise bounds for the matrix coefficients of infinite dimensional unitary representations of a reductive algebraic group defined over a local field k with semisimple k-rank at least 2, [22]. We explain how this information on local harmonic analysis yields norm estimates for (global) Hecke operators on L 2(Γ\G) for a connected almost simple simply connected ℚ-group G and its congruence subgroups Γ, [6]. With the tool of Hecke operators, we settle a question of Linnik raised in the early sixties on the distribution of integer points of Diophantine type varieties when the varieties are homogeneous spaces of a reductive algebraic group over ℚ, [11]. Lastly we discuss how to obtain evenly distributed sequences on the spheres S n (n ≥ 4) [23], generalizing the work of Lubotzky, Phillips and Sarnak on S 2 and S 3 ([19], [20]).


Unitary Representation Automorphic Form Integer Point Congruence Subgroup Orthogonal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arthur, J. (1979) Eisenstein Series and the trace formula. In: Automorphic forms, representations and L-functions (A. Borel and W. Casselman, Eds.) Proc. Symp. Pure Math. 33, 253–274MathSciNetGoogle Scholar
  2. 2.
    Burger, M., Sarnak, P. (1991) Ramanujan duals II. Invent. Math. 106, 1–11MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Chiu, P. (1995) Covering with Hecke points. J. Number Theory. 53, 25–44MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Clozel, L. (2001) Automorphic forms and the distribution of points on odddimensional spheres. PreprintGoogle Scholar
  5. 5.
    Clozel, L., Ullmo, E. (1999) Equidistribution des points de Hecke. PreprintGoogle Scholar
  6. 6.
    Clozel, L., Oh, H., Ullmo, E. (2001) Hecke operators and equidistribution of Hecke points. Invent. Math. 144, 327–351MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cowling, M., Haagerup, U., Howe, R. E. (1988) Almost L 2 matrix coefficients, J. Reine Angew. Math. 387, 97–110MathSciNetMATHGoogle Scholar
  8. 8.
    Cowling, M. (1979) Sur les coefficients des représentations unitaires des groupes de Lie simple. In: Analyse Harmonique sur les Groupes de Lie II, Séminaire Nancy-Strasbourg 1976–78 (P. Eymard, J. Faraut, G. Schiffmann, and R. Taka-hashi, Eds.) Lecture Notes in Mathematics 739, Springer-Verlag, New York. 132-178Google Scholar
  9. 9.
    Deligne, P. (1974) La conjecture de Weil I. Inst. Hautes Études Sci. Publ. Math. 43, 273–308MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gelbart, S., Jacquet, H. (1978) A relation between automorphic representations of GL 2 and GL 3. Ann. Sci. École Norm. Sup. 11, 471–552MathSciNetMATHGoogle Scholar
  11. 11.
    Gan, W. T., Oh, H. (2000) Equidistribution of integer points on a family of homogeneous varieties: a problem of Linnik. PreprintGoogle Scholar
  12. 12.
    Harish-Chandra (1973). Harmonic analysis on reductive p-adic groups. In: Harmonic analysis on Homogeneous spaces. Proc. Symp. Pure. Math. Providence. 26, 167–192MathSciNetGoogle Scholar
  13. 13.
    Howe, R. E. (1980) On a notion of rank for unitary representations of the classical groups. In: Harmonic analysis and group representations: II Ciclo, Palazzone délia Scuola normale superiore. C. I. M. E 223-331Google Scholar
  14. 14.
    Jacquet, H., Langlands, R. P. (1970) Automorphic Forms on GL 2. Springer Lect. Notes in Math. 114 Google Scholar
  15. 15.
    Li, J-S. (1996) The minimal decay of matrix coefficients for classical groups. Math. Appl (Harmonic analysis in China). 327, 146–167Google Scholar
  16. 16.
    Li, J-S., Zhu, C-B. (1996) On the decay of matrix coefficients for exceptional groups. Math. Ann. 305, 249–270MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Linnik, Y. V. (1962) Additive problems and eigenvalues of the modular operators. In: Proceedings of the International Congress of Mathematicians. Stockholm, 1962. 270-284.Google Scholar
  18. 18.
    Linnik, Y. V., Skubenko, B. F. (1964) Asymptotic distribution of integral matrices of third order. Vest. Leniner. Univ. Ser. Math. 13, 25–36MathSciNetGoogle Scholar
  19. 19.
    Lubotzky, A., Phillips, R., Sarnak, P. (1986) Hecke operators and distributing points on S 2. Comm. Pure Appl. Math. 39, 149–186MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lubotzky, A., Phillips, R., Sarnak, P. (1987) Hecke operators and distributing points on S 2 II. Comm. Pure Appl. Math. 40, 401–420MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Oh, H. (1998) Tempered subgroups and the representations with minimal decay of matrix coefficients. Bull. Soc. Math. France 126, 355–380MathSciNetMATHGoogle Scholar
  22. 22.
    Oh, H. (1999) Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants. To appear in Duke Math. J.Google Scholar
  23. 23.
    Oh, H. (2000) Distributing points on S n (n ≥ 4) d’aprés Lubotzky, Phillips and Sarnak. PreprintGoogle Scholar
  24. 24.
    Sarnak, P. (1991) Diophantine problems and linear groups. In: Proceedings of the International Congress of Mathematicians. Kyoto, 1990. 1, 459–471, Springer-Verlag, TokyoGoogle Scholar
  25. 25.
    Sato, M., Kimura, T. (1977) A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. Journal 65, 1–155.MathSciNetMATHGoogle Scholar
  26. 26.
    Serre, J. P. (1973) A course in Arithmetic. Springer-VerlagGoogle Scholar
  27. 27.
    Shintani, T. (1972) Dirichlet series and integral binary cubic forms. Journal Math. Soc. Japan. 24, 132–188.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Weil, A. (1973) Basic Number Theory. Springer-VerlagGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Hee Oh
    • 1
  1. 1.Mathematics departmentPrinceton UniversityPrincetonUSA

Personalised recommendations