Skip to main content

Nonexpanding Maps, Busemann Functions, and Multiplicative Ergodic Theory

  • Chapter

Abstract

We describe some results on the dynamics of nonexpanding maps of metric spaces.

First, considering nonexpanding maps of proper metric spaces, we explain generalizations of some results of Beardon, which extends the Wolff-Denjoy theorem in complex analysis.

Second, we consider certain cocycles, or ‘random products’, of nonexpanding maps of nonpositively curved spaces. In a joint work with Margulis, we obtained that almost every trajectory lies on sublinear distance from a geodesic ray. In the special case where the metric space is the symmetric space of positive definite, symmetric matrices and the cocycles are isometries, this statement is equivalent to Oseledec’s multiplicative ergodic theorem.

Further consequences concerning random ergodic theorems, cocycles of bounded linear operators, random walks and Poisson boundaries, are briefly discussed.

Partially supported by the Göran Gustafsson Foundation, the Sweden-America Foundation, and an Alfred P. Sloan Doctoral Dissertation Fellowship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abate, M., Iteration theory of holomorphic maps on taut manifolds. Res. Lect. Notes Math., Mediterranean Press, Italy 1989

    Google Scholar 

  2. Ballmann, W., On the Dirichlet problem at infinity for manifolds of nonpositive curvature, Forum Math. 1 (1989), 201–213

    Article  MathSciNet  MATH  Google Scholar 

  3. Ballmann, W., Lectures on Spaces of Nonpositive Curvature. DMV-Seminar, Bd. 25. Basel, Boston, Berlin: Birkhäuser, 1995

    Google Scholar 

  4. Ballmann, W., Gromov, M., Schroeder, V., Manifolds of Nonpositive Curvature, Progress in Math. vol. 61, Birkhäuser, Boston, 1985

    Google Scholar 

  5. Ballmann, W., Ledrappier, F., The Poisson boundary for rank one manifolds and their cocompact lattices. Forum Math. 6 (1994), 301–313

    Article  MathSciNet  MATH  Google Scholar 

  6. Balogh, Z., Bonk, M., Pseudoconvexity and Gromov hyperbolicity. C. R. Acad. Sc. Paris 328, Série I, (1999), 597–602

    Article  MathSciNet  MATH  Google Scholar 

  7. Beardon, A. F., Iteration of contractions and analytic maps, J. London Math. Soc. 41 (1990), 141–150

    Article  MathSciNet  MATH  Google Scholar 

  8. Beardon, A.F., The dynamics of contractions, Ergod. Th. Dyn. Sys. 17 (1997), 1257–1266

    Article  MathSciNet  MATH  Google Scholar 

  9. Beck, A., Schwartz, J.T. A vector-valued random ergodic theorem Proc. Amer. Math. Soc. 8 (1957), 1049–1059

    Article  MathSciNet  Google Scholar 

  10. Corach, G., Porta, H., Recht, L., Convexity of the geodesic distance on spaces of positive operators, Illinois J. of Math. 38:1 (1994), 87–94.

    MathSciNet  MATH  Google Scholar 

  11. Denjoy, A., Sur l’iteration des fonctions analytiques, C. R. Acad. Sc. Paris 328, Série I, (1926), 255–257

    Google Scholar 

  12. Furstenberg, H., Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. Pure Math., vol. 26, 193–229. Providence, RI: American Mathematical Society 1973

    Google Scholar 

  13. Goebel, K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, UK, 1990.

    Book  MATH  Google Scholar 

  14. Goldsheid, I.Y., Margulis, G.A. Lyapunov indices of a product of random matrices, Russian Math. Surveys 44 (1989), 11–71.

    Article  MathSciNet  Google Scholar 

  15. Heins, M., On the iteration of functions which are analytic and singlevalued in a given multiply-connected region, Amer. J. Math. 63 (1941), 461–480.

    Article  MathSciNet  Google Scholar 

  16. Hervé, M., Quelques propriétés des application analytiques d’une boule à m dimensions dans elle-même, J. Math. Pures Appl. 42 (1963), 117–147

    MathSciNet  MATH  Google Scholar 

  17. Kaimanovich, V.A., An entropy criterion for maximality of the boundary of random walks on discrete groups, Soviet Math. Dokl. 31 (1985), 193–197

    Google Scholar 

  18. Kaimanovich, V.A., Lyapunov exponents, symmetric spaces and multiplicative ergodic theorem for semisimple Lie groups, J. Soviet Math. 47 (1989), 2387–2398

    Article  MathSciNet  Google Scholar 

  19. Kaimanovich, V.A., The Poisson formula for groups with hyperbolic properties, Ann. of Math. (2) 152 no.3 (2000), 659–692

    Article  MathSciNet  MATH  Google Scholar 

  20. Kakutani, S., Ergodic theory, Proceedings of the International Congress of Mathematicians, Cambridge, Mass. 1950 vol. 2 128-142, AMS 1952

    Google Scholar 

  21. J. Kapeluszny, T. Kuczumow, S. Reich The Denjoy-Wolff theorem in the open unit ball of a strictly convex Banach space, Adv. Math. 143 (1999), 111–123

    Article  MathSciNet  MATH  Google Scholar 

  22. Karlsson, A., Nonexpanding maps and Busemann functions, Ergod. Th. Dynam. Syst. 21 (2001) 1447–1457.

    Article  MathSciNet  MATH  Google Scholar 

  23. Karlsson, A., Unbounded nonexpansive iterations in Banach spaces and multiplicative ergodic theory, Preprint (2000).

    Google Scholar 

  24. Karlsson, A., Margulis, G.A., A multiplicative ergodic theorem and non-positively curved spaces, Comm. Math. Phys. 208 (1999), 107–123

    Article  MathSciNet  MATH  Google Scholar 

  25. Kingman, J.F.C., The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc., B 30 (1968), 499–510

    MathSciNet  MATH  Google Scholar 

  26. Kobayashi, S., Hyperbolic Complex Spaces. Grundlehren der math. Wissenschaften 105, Springer-Verlag, Berlin Heidelberg New York, 1998

    Google Scholar 

  27. Kohlberg, E., Neyman, A., Asymptotic behavior of nonexpansive mappings in normed linear spaces, Israel J. Math. 38 (1981), 269–274

    Article  MathSciNet  MATH  Google Scholar 

  28. Lang, S., Complex analysis, Graduate text in Mathematics 103, Springer-Verlag, New York, 1999

    Google Scholar 

  29. Ma, D.W., On iterates of holomorphic maps Math. Z. 207 (1991), 417–428

    Article  MathSciNet  MATH  Google Scholar 

  30. Mellon, P., Holomorphic invariance on bounded symmetric domains, J. reine angew. Math. 523 (2000), 199–223

    MathSciNet  MATH  Google Scholar 

  31. Oseledec, V.I., A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197–231

    MathSciNet  Google Scholar 

  32. Pazy, A., Asymptotic behavior of contractions in Hilbert space, Israel J. Math. 9 (1971), 235–240

    Article  MathSciNet  MATH  Google Scholar 

  33. Plant, A., Reich, S., The asymptotics of nonexpansive iterations, J. Funct. Anal. 54 (1983), 308–319

    Article  MathSciNet  MATH  Google Scholar 

  34. Ruelle, D., Characteristic exponents and invariant manifolds in Hilbert space, Ann. Math. 155 (1982), 243–290

    Article  MathSciNet  Google Scholar 

  35. Wittmann, R., Almost everywhere convergence of ergodic averages of nonlinear operators J. Funct. Anal. 127 (1995), 326–362

    Article  MathSciNet  MATH  Google Scholar 

  36. Wolff, J., Sur l’iteration des fonctions bornées, C. R. Acad. Sc. Paris 182 (1926), 42–43, 200-210

    MATH  Google Scholar 

  37. Wolff, J., Sur une généralisation d’un théorème de Schwarz, C. R. Acad. Sc. Paris 182 (1926), 918–920, and 183 (1926), 500-502

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karlsson, A. (2002). Nonexpanding Maps, Busemann Functions, and Multiplicative Ergodic Theory. In: Burger, M., Iozzi, A. (eds) Rigidity in Dynamics and Geometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04743-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04743-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07751-7

  • Online ISBN: 978-3-662-04743-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics