Bounded Cohomology, Boundary Maps, and Rigidity of Representations into Homeo+(S1) and SU(1, n)

  • Alessandra Iozzi
Chapter

Abstract

We define, associated to a given a representation π: Γ → H of a finitely generated group into a topological group, invariants defined in terms of bounded cohomology classes. In the case H = SU(1, n) we illustrate, among others and without proof, rigidity results which generalize a theorem of Goldman and Millson ([14]). In the case H = Homeo+(S1), the group of orientation preserving homeomorphisms of the circle, we give a new complete proof of a rigidity result of Matsumoto ([17]), stating that any two representations with maximal Euler number are semiconjugate.

The methods used rely on the homological approach to continuous bounded cohomology developed in [5]and [1].

Keywords

Manifold Stratification Topo Zucker Agram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Burger and A. Iozzi, Boundary maps in bounded cohomology, Appendix to “Continuous bounded cohomology and applications”, by M. Burger and N. Monod, preprint, 2001.Google Scholar
  2. 2.
    —, Bounded cohomology and representation varieties in PSU(1, n), preprint announcement, April 2000.Google Scholar
  3. 3.
    —, Bounded cohomology and totally real subspaces in complex hyperbolic geometry, preprint, March 2001.Google Scholar
  4. 4.
    M. Burger and N. Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. 1 (1999), 199–235.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    —, Continuous bounded cohomology and applications to rigidity theory, Geom. Punct. Anal. (2002), to appear.Google Scholar
  6. 6.
    J. L. Dupont, Bounds for characteristic numbers of flat bundles, Algebraic topology, Aarus 1978, Lecture Notes in Mathematics, vol. 763, Springer Verlag, 1979.Google Scholar
  7. 7.
    J. L. Dupont and A. Guichardet, À propos de Varticle “Sur la cohomologie réelle des groupes de Lie simple réels”, Ann. Sci. Éc. Norm. Sup. IV Série 11 (1978), 293–295.MathSciNetMATHGoogle Scholar
  8. 8.
    H. Purstenberg, Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis on homogeneous spaces, Symposia on pure and applied math. Williamstown, MA 1972, vol. 26, 1973, pp. 229–913.Google Scholar
  9. 9.
    S. M. Gersten, Bounded cocycles and combing of groups, Internat. J. Algebra Comput. 2 (1992), 307–326.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    E. Ghys, Groupes d’homéomorphismes du cercle et cohomologie bornée, The Lefschetz centennial conference, Part III, (Mexico City 1984), Contemp. Math., vol. 58, American Mathematical Society, RI, 1987, pp. 81-106.Google Scholar
  11. 11.
    —, Actions des réseaux sur le cercle, Invent. Math. 137 (1999), 199–231.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    E. Ghys and V. Sergiescu, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv. 62 (1987), 185–239.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    W. M. Goldman, Discontinuous groups and the Euler class, Thesis, University of California at Berkeley, 1980.Google Scholar
  14. 14.
    W. M. Goldman and J. Millson, Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math. 88 (1987), 495–520.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    N. Gusevskii and J. R. Parker, Representations of free Fuchsian groups in complex hyperbolic space, Topology 39 (2000), 33–60.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    G. A. Margulis, Free subgroups of the homeomorphism group of the circle, preprint, 2001.Google Scholar
  17. 17.
    S. Matsumoto, Some remarks on foliated S 1 bundles, Invent. Math. 90 (1987), 343–358.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1957-58), 215–223.MathSciNetCrossRefGoogle Scholar
  19. 19.
    N. Monod, Continuous bounded cohomology of locally compact groups, Lecture Notes in Math., no. 1758, Springer-Verlag, 2001.Google Scholar
  20. 20.
    S. M. Srivastava, A course on Borel sets, Springer-Verlag, New York, 1998.MATHCrossRefGoogle Scholar
  21. 21.
    W. T. van Est, Group cohomology and Lie algebra cohomology in Lie groups, I, II, Nederl. Akad. Wetensch. Proc. Series A. 56=Indag. Math. 15 (1953), 484–504.Google Scholar
  22. 22.
    J. W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971), 257–273.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    R. J. Zimmer, Ergodic theory and semisimple groups, Birkhäuser, Boston, 1984.Google Scholar
  24. 24.
    S. Zucker, L 2 -cohomology of warped products and arithmetic groups, Invent. Math. 70 (1982), 169–218.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Alessandra Iozzi
    • 1
  1. 1.ETH ZentrumZürichSwitzerland

Personalised recommendations