Skip to main content

Diophantine Approximation in Negatively Curved Manifolds and in the Heisenberg Group

  • Chapter
Rigidity in Dynamics and Geometry

Abstract

This paper is a survey of the work of the authors [21], [2], [22], with a new application to Diophantine approximation in the Heisenberg group. The Heisenberg group, endowed with its Carnot-Carathéodory metric, can be seen as the space at infinity of the complex hyperbolic space (minus one point). The rational approximation on the Heisenberg group can be interpreted and developed using arithmetic subgroups of SU (n, 1). In the appendix, the case of hyperbolic surfaces is developed by Jouni Parkkonen and the second author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artin, E. Ein mechanische system mit quasiergodischen Bahnen, Abh. Math. Sem. Univ. Hamburg, 3 (1924), 170–175

    Article  MATH  Google Scholar 

  2. Belabas, K., Hersonsky, S., Paulin, F. Counting horoballs and rational geodesics, Bull. Lond. Math. Soc., 33 (2001), 606–612

    Article  MathSciNet  MATH  Google Scholar 

  3. Borel, A. Linear algebraic groups, Grad. Texts Math. 126, Springer Verlag (1991).

    Google Scholar 

  4. Borel, A. Reduction theory for arithmetic groups, in “Algebraic Groups and Discontinuous Subgroups”, A. Borel and G. D. Mostow eds, Proc. Sympos. Pure Math., (Boulder, 1965), 20-25 Amer. Math. Soc. 1966.

    Google Scholar 

  5. Bourdon, M. Structure conforme au bord et flot géodésique d’un CAT(-1) espace, L’Enseign. Math. 41 (1995) 63–102.

    MathSciNet  MATH  Google Scholar 

  6. Buser, P., Karcher, H. Gromov’s almost flat manifolds, Astérisque 81, Soc. Math. France, 1981.

    Google Scholar 

  7. Corlette, K., Iozzi, A. Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Amer. Math. Soc. 351 (1999) 1507–1530.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohn, H. Representation of Markoff’s binary quadratic forms by geodesics on a perforated torus, Acta Arith. 18 (1971) 125–136.

    MathSciNet  MATH  Google Scholar 

  9. Cosentino, S. Equidistribution of parabolic fixed points in the limit set of Kleinian groups, Ergod. Theory. Dynam. Sys. 19 (1999) 1437–1484.

    Article  MathSciNet  MATH  Google Scholar 

  10. Cygan, J. Wiener’s test for Brownian motion on the Heisenberg group, Colloquium Math. 39 (1978) 367–373.

    MathSciNet  MATH  Google Scholar 

  11. Dal’Bo, F. Remarques sur le spectre des longueurs d’une surface et comptage, Bol. Soc. Bras. Math. 30 (1999) 199–221.

    Article  MathSciNet  Google Scholar 

  12. Dal’bo, F., Otal, J.-P., Peigné, M. Séries de Poincaré des groupes géométriquement finis, Israel J. Math. 118 (2000) 109–124.

    Article  MathSciNet  Google Scholar 

  13. Dani, S.J. Bounded orbits of flows on homogeneous spaces, Comment. Math. Helv. 61 (1986), no. 4, 636–660.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ford, L. Rational approximations to irrational complex numbers, Trans. Amer. Math. Soc. 99 (1918), 1–42.

    Google Scholar 

  15. Goldman, W.M. Complex hyperbolic geometry, Oxford Univ. Press, 1999.

    Google Scholar 

  16. Gromov, M. Carnot-Carathéodory spaces seen from within, in “Sub-Riemannian geometry”, 79-323, Progr. Math. 144, Birkhäuser, 1996.

    Google Scholar 

  17. Haas, A. Diophantine approximation on hyperbolic surfaces, Acta Math. 156 (1986) 33–82.

    Article  MathSciNet  MATH  Google Scholar 

  18. Haas, A., Series, C. The Hurwitz constant and Diophantine approximation on Hecke groups, J. Lond. Math. Soc. 34 (1986) 219–234.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hersonsky, S., Paulin, F. On the volumes of complex hyperbolic manifolds, Duke Math. J. 84 (1996) 719–737.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hersonsky, S., Paulin, F. On the rigidity of discrete isometry groups of negatively curved spaces, Comment. Math. Helv. 72 (1997) 349–388.

    Article  MathSciNet  MATH  Google Scholar 

  21. Hersonsky, S., Paulin, F. Diophantine approximation for negatively curved manifolds, to appear in Math. Z.

    Google Scholar 

  22. Hersonsky, S., Paulin, F. Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions, preprint Jan. 2001.

    Google Scholar 

  23. Hill, R., Velani, S.L. The Jarník-Besicovitch theorem for geometrically finite Kleinian groups, Proc. London Math. Soc. 3 (1997) 524–551.

    MathSciNet  Google Scholar 

  24. Kamiya, S. Notes on non-discrete subgroups of \(\left( {\tilde X,\tilde g} \right)\)(1, n; F), Hiroshima Math. J. 13 (1983), 501–506.

    MathSciNet  MATH  Google Scholar 

  25. Khinchin, A. Continued fractions, Univ. Chicago Press, 1964.

    Google Scholar 

  26. Kleinbock, D., Margulis, G. Logarithm laws for flows on homogenoeous spaces, Invent. Math. 138 (1999) 451–494.

    Article  MathSciNet  MATH  Google Scholar 

  27. Korányi, A., Reimann, H.M. Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985) 309–338.

    Article  MathSciNet  MATH  Google Scholar 

  28. Lang, S. Fundamentals of Diophantine geometry, Springer-Verlag, 1983.

    Google Scholar 

  29. Mattila, P. Geometry of sets and measures in Euclidean spaces, Camb. Stud. Avd. Math. 44, Camb. Univ. Press, 1995.

    Google Scholar 

  30. Parker, J. Shimizu’s lemma for complex hyperbolic space, International J. Math. 3 (1992), 291–308.

    Article  MATH  Google Scholar 

  31. Patterson, S.J. Diophantine approximation in Fuchsian groups, Philos. Trans. Roy. Soc. London Ser. A 282, 241-273.

    Google Scholar 

  32. Raghunathan, M. Discrete subgroups of Lie groups, Springer Verlag 1972.

    Google Scholar 

  33. Roblin, T. Ergodicité du feuilletage horocyclique, mélange du flot géodésique et équidistribution pour les groupes discrets en courbure négative, in preparation.

    Google Scholar 

  34. Schmidt, A.L. Diophantine approximations of complex numbers, Acta. Math. 134 (1975), 1–84.

    Article  MathSciNet  MATH  Google Scholar 

  35. Schmutz Schaller, P. The modular torus has maximal length spectrum, Geom. Funct. Anal. 6 (1996) 1057–1073.

    Article  MathSciNet  MATH  Google Scholar 

  36. C. Series, The modular surface and continued fractions, J. Lond. Math. Soc. 31 (1985) 69–80.

    Article  MathSciNet  MATH  Google Scholar 

  37. Sullivan, D. Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., 149 (1982), 215–237.

    Article  MathSciNet  MATH  Google Scholar 

  38. Swan, R. Generators and relations for certain special linear groups, Adv. Math. 6 (1971) 1–77.

    Article  MathSciNet  MATH  Google Scholar 

  39. Velani, S. Geometrically finite groups, Khintchine-type theorems and Hausdorff dimension, Math. Proc. Camb. Phil. Soc. 120 (1996) 647–662.

    Article  MathSciNet  MATH  Google Scholar 

  40. Vulakh, L. Diophantine approximation on Bianchi groups, J. Number Theory 54 (1995) 73–80.

    Article  MathSciNet  MATH  Google Scholar 

  41. Vulakh, L. Diophantine approximation inn, Trans. Amer. Math. Soc. 347 (1995) 573–585.

    MathSciNet  MATH  Google Scholar 

  42. Zink, T. Über die Anzahl der Spitzen einiger arithmetischer Untergruppen unitärer Gruppen, Math. Nachr. 89 (1979) 315–320.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hersonsky, S., Paulin, F. (2002). Diophantine Approximation in Negatively Curved Manifolds and in the Heisenberg Group. In: Burger, M., Iozzi, A. (eds) Rigidity in Dynamics and Geometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04743-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04743-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07751-7

  • Online ISBN: 978-3-662-04743-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics