Phase Transitions, Scale Invariance, Renormalization Group Theory, and Percolation

  • Franz Schwabl
Part of the Advanced Texts in Physics book series (ADTP)


This chapter builds upon the results of the two preceding chapters dealing with the ferromagnetic phase transition and the gas-liquid transition. We start with some general considerations on symmetry breaking and phase transitions. Then a variety of phase transitions and critical points are discussed, and analogous behavior is pointed out. Subsequently, we deal in detail with critical behavior and give its phenomenological description in terms of static scaling theory. In the section that follows, we discuss the essential ideas of renormalization group theory on the basis of a simple model, and use it to derive the scaling laws. Finally, we introduce the Ginzburg-Landau theory; it provides an important cornerstone for the various approximation methods in the theory of critical phenomena.


Partition Function Renormalization Group Ising Model Critical Exponent Percolation Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena, 2nd ed., World Scientific, Singapore 1984Google Scholar
  2. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)MathSciNetADSCrossRefGoogle Scholar
  3. K. Binder, Rep. Progr. Phys. 60, 487 (1997)ADSCrossRefGoogle Scholar
  4. J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The Theory of Critical Phenomena, 2nd ed., Oxford University Press, New York 1993Google Scholar
  5. M. J. Buckingham and W. M. Fairbank, in: C. J. Gorter (Ed.), Progress in Low Temperature Physics, Vol. III, 80–112, North Holland Publishing Company, Amsterdam 1961Google Scholar
  6. A. Bunde and S. Havlin, in: A. Bunde, S. Havlin (Eds.), Fractals and Disordered Systems, 51, Springer, Berlin 1991MATHGoogle Scholar
  7. Critical Phenomena, Lecture Notes in Physics 54, Ed. J. Brey and R. B. Jones, Springer, Sitges, Barcelona 1976Google Scholar
  8. M. C. Cross and P. C. Hohenberg (1994), Rev. Mod. Phys. 65, 851–1112ADSCrossRefGoogle Scholar
  9. P. G. De Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY 1979Google Scholar
  10. C. Domb and M. S. Green, Phase Transitions and Critical Phenomena, Academic Press, London 1972–1976Google Scholar
  11. C. Domb and J. L. Lebowitz (Eds.), Phase Transitions and Critical Phenomena, Vols. 7–15, Academic Press, London 1983–1992Google Scholar
  12. B. Drossel and F. Schwabl, Phys. Rev. Lett. 69, 1629 (1992)ADSCrossRefGoogle Scholar
  13. J. W. Essam, Rep. Prog. Phys. 43, 843 (1980)MathSciNetADSCrossRefGoogle Scholar
  14. M. E. Fisher, Rep. Prog. Phys. 30, 615–730 (1967)ADSCrossRefGoogle Scholar
  15. M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974)ADSCrossRefGoogle Scholar
  16. E. Frey and F. Schwabl, Adv. Phys. 43, 577–683 (1994)ADSCrossRefGoogle Scholar
  17. Shang-Keng Ma, Modern Theory of Critical Phenomena, Benjamin, Reading, Mass. 1976Google Scholar
  18. S. Ma, in: C. Domb and M. S. Green (Eds.), Phase Transitions and Critical Phenomena, Vol. 6, 249–292, Academic Press, London 1976Google Scholar
  19. T. Niemeijer and J. M. J. van Leeuwen, in: C. Domb and M. S. Green (Eds.), Phase Transitions and Critical Phenomena, Vol. 6, 425–505, Academic Press, London 1976Google Scholar
  20. H. J. Jensen, Self-Organized Criticality, Cambridge University Press, Cambridge 1998MATHGoogle Scholar
  21. G. Parisi, Statistical Field Theory, Addison—Wesley, Redwood 1988MATHGoogle Scholar
  22. A. Z. Patashinskii and V. L. Prokovskii, Fluctuation theory of Phase Transitions, Pergamon Press, Oxford 1979Google Scholar
  23. P. Pfeuty and G. Toulouse, Introduction to the Renormalization Group and to Critical Phenomena, John Wiley, London 1977Google Scholar
  24. C. N. R. Rao and K. J. Rao, Phase Transitions in Solids, McGraw Hill, New York 1978Google Scholar
  25. F. Schwabl and U. C. Täuber, Phase Transitions: Renormalization and Scaling, in Encyclopedia of Applied Physics, Vol. 13, 343, VCH (1995)Google Scholar
  26. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Clarendon Press, Oxford 1971Google Scholar
  27. D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London and Philadelphia 1985MATHCrossRefGoogle Scholar
  28. J. M. J. van Leeuwen in Fundamental Problems in Statistical Mechanics III Ed. E. G. D. Cohen, North Holland Publishing Company, Amsterdam 1975Google Scholar
  29. K. G. Wilson and J. Kogut, Phys. Rept. 12C, 76 (1974)ADSCrossRefGoogle Scholar
  30. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975)ADSCrossRefGoogle Scholar
  31. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd edition, Clarendon Press, Oxford 1996MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Franz Schwabl
    • 1
  1. 1.Physik-DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations