Skip to main content

Continua and Generalities About Their Equations

  • Chapter
Foundations of Fluid Dynamics

Part of the book series: Texts and Monographs in Physics ((TMP))

  • 612 Accesses

Abstract

A homogeneous continuum, chemically inert, in d dimensions is described by:

  1. (a)

    a region Ω in ambient space (Ω ⊂ ℝd), which is the occupied volume;

  2. (b)

    a function Pρ(P) > 0, defined on Ω, giving the mass density;

  3. (c)

    a function PT(P) defining the temperature;

  4. (d)

    a function Ps(P) defining the entropy density (per unit mass);

  5. (e)

    a function Pδ(P) defining the displacement with respect to a reference configuration;

  6. (f)

    a function Pu(P) defining the velocity field;

  7. (g)

    an equation of state relating T(P), s(P), ρ(P);

  8. (h)

    a stress tensor \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\tau } \), also denoted (τ ij ), giving the force per unit surface that the part of the continuum in contact with an ideal surface element dσ, with normal vector n, on the side of n, exercises on the part of the continuum in contact with dσ on the side opposite to n, via the formula

    $$d\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f} = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\tau } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n} d\sigma \;{(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\tau } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n} )_i} = \sum\nolimits_{j = 1}^d {{\tau _{ij}}} {n_j}$$
    (1.1.1)
  9. (i)

    a thermal conductivity tensor \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{k} \), giving the quantity of heat traversing the surface element dσ; in the direction of n per unit time via the formula

    $$dQ = - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{k} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\partial } T\;d\sigma $$
    (1.1.2)
  10. (l)

    a volume force density Pg(P);

  11. (m)

    a relation expressing the stress and conductivity tensors as functions of the observables δ, u, ρ, T, s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Landau, L., Lifchitz, E.: Mécanique des fluides, MIR, Moscow, 1971.

    Google Scholar 

  2. Lamb, H.: Hydrodynamics, sesta edizione, Cambridge University Press, 1932.

    Google Scholar 

  3. Arnold, V.: Metodi Matematici della Meccanica Classica, Editori Riuniti, 1979.

    Google Scholar 

  4. Dyachenko, A.I., Zakharov, V.E.: Is free surface hydrodynamics an integrable system?, Physics Letters A190, 144–148, 1994.

    Article  MathSciNet  Google Scholar 

  5. Dyachenko, Lvov, Y.V., A.I., Zakharov V.E: Five-wave interaction on the surface of deep fluid, Physica D, 87, 233–261, 1995.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Craig, W., Worfolk, P.: An integrable normal form for water waves in infinite depth, Physica D 84 (1995) pp. 513–531

    Google Scholar 

  7. Craig, W.: Birkhoff normal forms for water waves, Mathematical Problems in Water Waves, Contemporary Mathematics, AMS (1996), pp. 57–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gallavotti, G. (2002). Continua and Generalities About Their Equations. In: Foundations of Fluid Dynamics. Texts and Monographs in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04670-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04670-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07468-4

  • Online ISBN: 978-3-662-04670-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics