Superconducting Superfluids in Neutron Stars

  • Brandon Carter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 132)

Summary

For treatment of the layers below the crust of a neutron star it is useful to employ a relativistic model involving three independently moving constituents, representing superfluid neutrons, superfluid protons, and degenerate negatively charged leptons. A Kalb-Ramond type formulation is used here to develop such a model for the specific purpose of application at the semi macroscopic level characterised by lengthscales that are long compared with the separation between the highly localised and densely packed proton vortices of the Abrikosov type lattice that carries the main part of the magnetic flux, but that are short compared with the separation between the neutron vortices.

Keywords

Entropy Vortex Anisotropy Neral Vorticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Carter, “The canonical treatment of heat conduction and superfluidity in relativistic hydrodynamics”, in A random walk in Relativity and Cosmology (Essays in honour of P.C. Vaidya & A.K. Raychaudhuri), ed. N. Dadhich, J. Krishna Rao, J.V. Narlikar, C.V. Visveshwara, pp 48–62 (Wiley Eastern, Bombay, 1985).Google Scholar
  2. 2.
    B. Carter, D. Langlois, “Relativistic model for superconducting superfluid mixtures”, Nucl. Phys. B531, pp 478–504 (1998) [gr-qc/9806024].MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    V.V. Lebedev, I.M. Khalatnikov, “Relativistic hydrodynamics of a superfluid”, Sov. Phys. J.E.T.P. 56, pp 923–930 (1982).Google Scholar
  4. 4.
    B. Carter, I.M. Khalatnikov, “Momentum, Vorticity, and Helicity in Covariant Superfluid Dynamics”, Ann. Phys. 219, pp 243–265 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    B. Carter, D. Langlois, “Kalb-Ramond coupled vortex fibration model for relativistic superfluid dynamics”, Nuclear Physics B 454, 402–424 (1995) [hep-th/9611082].MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    A.F. Andreev, E.P. Bashkin, “Three velocity hydrodynamics of superfluid solutions” Sov. Phys. J.E.T.P., 42, 164–646 (1975).ADSGoogle Scholar
  7. 7.
    G.A. Vardanyan, D.M. Sedrakyan, “Magnetohydrodynamics of superfluid solutions”, Sov. Phys. J.E.T.P. 54, 919–921 (1981).Google Scholar
  8. 8.
    G. Mendell, L. Lindblom, “The coupling of charged superfluid mixtures to the electromagnetic field”, Ann. Phys. 205, 110–129 (1991).ADSMATHCrossRefGoogle Scholar
  9. 9.
    I.L. Bekarevich and I.M. Khalatnikov, “Phenomenological derivation of the equations of vortex motion in Hell”, Sov. Phys. J.E.T.P. 13, 643 (1961).Google Scholar
  10. 10.
    B. Carter, R. Prix, D. Langlois, “Energy of Magnetic Vortices in Rotating Superconductor” Phys. Rev. B62 [cond-mat/9910240].Google Scholar
  11. 11.
    M.A. Alpar, S.A. Langer, J.A. Sauls, “Rapid postglitch spin-up of the superfluid core in pulsars”, Astroph. J. 282, 533–541 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    B. Carter, R. Prix, D. Langlois, “Bogomoln’yi limit for magnetic vortices in rotating superconductor” Phys. Rev. B62 (2000) [cond-mat/9910263].Google Scholar
  13. 13.
    G. Mendel, “Superfluid hydrodynamics in rotating neutron stars. I Nondissi-pative equations” Astroph. J 380, pp 515–529 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    I. M. Khalatnikov, Introduction to the Theory of Superfluidity (Benjamin, New York, 1965).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Brandon Carter

There are no affiliations available

Personalised recommendations