Charged Vortices in High-Tc Superconductors

  • Yuji Matsuda
  • Ken-ichi Kumagai
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 132)


It is well known that a vortex in type II superconductors traps a magnetic flux. Recently the possibility that a vortex can accumulate a finite electric charge as well has come to be realized. The sign and magnitude of the vortex charge not only is closely related to the microscopic electronic structure of the vortex, but also strongly affects the dynamical properties of the vortex. In this chapter we demonstrate that a vortex in high-T c superconductors (HTSC) indeed traps a finite electronic charge, using the high resolution measurements of the nuclear quadru-pole frequencies. We then discuss the vortex Hall anomaly whose relation with the vortex charging effect has recently received considerable attention. We show that the sign of the trapped charge is opposite to the sign predicted by the conventional BCS theory and deviation of the magnitude of the charge from the theory is also significant. We also show that the electronic structure of underlying system is responsible for the Hall sign in the vortex state and again the Hall sign is opposite to the sign predicted by the BCS theory. It appears that these unexpected features observed in both electrostatics and dynamics of the vortex may be attributed to the novel electronic structure of the vortex in HTSC.


Vortex Core Electric Field Gradient Superconducting State Nuclear Quadrupole Resonance Vortex Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.G. de Gennes in Superconductivity of Metal and Alloys. (Addison-Wesley Publishing Co., Inc., 1989).Google Scholar
  2. 2.
    D.I. Khomskii and A. Freimuth, Phys. Rev. Lett. 75 1384 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    G. Blatter, M. Feigelman, V. Geshkenbein, A. Larkin, A. van Otterlo, Phys. Rev. Lett. 77, 566 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    T. Mishonov, Cond-mat/0004286.Google Scholar
  5. 5.
    N. Hayashi, M. Ichioka, K. Machida, J. Phys. Soc. Jpn, 67 3368 (1999).CrossRefGoogle Scholar
  6. 6.
    J. Kolácek, P. Lapavsky, and E.H. Brandt, Phys. Rev. Lett 86, 312 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    I. Maggio-Aprile, Ch. Renner, A. Erb, E. Walker, O. Fischer, Phys. Rev. Lett. 75, 2754 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    Ch. Renner, B. Revaz, K. Kadowaki, I. Maggio-Aprile, O. Fischer, Phys. Rev. Lett. 80, 3606 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    S.H. Pan, E.W. Hudson, A.K. Gupta, K.-W. Ng, H. Eisaki, S. Uchida, J.C. Davis, Phys. Rev. Lett. 85, 1536 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    N. Schopohl, N. and K. Maki, Phys. Rev. B 52, 490 (1995)ADSCrossRefGoogle Scholar
  11. 10a.
    M. Ichioka, N. Hayashi, N. Enomoto, K. Machida, Phys. Rev. B 53, 15316 (1996).ADSCrossRefGoogle Scholar
  12. 11.
    G. E. Volovik, JETP Lett. 58, 470 (1993).ADSGoogle Scholar
  13. 12.
    P. I. Soininen, C. Kallin, and A. J. Berlinsky, Phys. Rev. B 50, 13883 (1994)ADSCrossRefGoogle Scholar
  14. 12a.
    Yong Ren, Ji-Hai Xu, and C. S. Ting, Phys. Rev. Lett. 74, 3680 (1995)ADSCrossRefGoogle Scholar
  15. 12b.
    A.J. Berlinsky, A. L. Fetter, M. Franz, C. Kallin, P.I. Soininen, Phys. Rev. Lett. 75, 2200 (1995).ADSCrossRefGoogle Scholar
  16. 13.
    Y. Wang and MacDonald, Phys. Rev. B 52, R3876 (1995).ADSCrossRefGoogle Scholar
  17. 14.
    Y. Morita, M. Kohmoto, K. Maki, Phys. Rev. Lett. 78, 4841 (1997).ADSCrossRefGoogle Scholar
  18. 15.
    M. Franz, and Z. Tesanovic, Phys Rev. Lett. 80, 4763 (1998).ADSCrossRefGoogle Scholar
  19. 16.
    K. Yasui, and T. Kita, Phys Rev. Lett. 83, 4168 (1999).ADSCrossRefGoogle Scholar
  20. 17.
    D.P. Arovas, A.J. Berlinsky, C. Kallin, S.-C. Zhang, Phys. Rev. Lett. 79, 2871 (1997).ADSCrossRefGoogle Scholar
  21. 18.
    A. Himeda, M. Ogata, Y. Tanaka, S. Kashiwaya, J. Phys Soc. Jpn. 66 3367(1997).ADSCrossRefGoogle Scholar
  22. 19.
    M. Ogata, Int. J. Mod. Phys B 13, 3560 (1999).ADSCrossRefGoogle Scholar
  23. 20.
    J.H. Han, and D.-H. Lee, Phys. Rev. Lett, 85, 1100 (2000).ADSCrossRefGoogle Scholar
  24. 21.
    M. Franz, and Z. Tesanovic, cond-mat/0002137.Google Scholar
  25. 22.
    B. M. Andersen, H. Bruus, P. Hedegård, Phys Rev. B, 61, 6298 (2000).ADSCrossRefGoogle Scholar
  26. 23.
    M. Eschrig, J.A. Sauls, Phys Rev. B 60, 10447 (1999).ADSCrossRefGoogle Scholar
  27. 24.
    S.J. Hagen, A.W. Smith, M. Rajeswari, J.L. Peng, Z.Y. Li, R.L. Greene, S.N. Mao, X.X. Xi, S. Bhattacharya, Qi Li, C.J. Lobb, Phys. Rev. B 47, 1064 (1993) and therein.ADSCrossRefGoogle Scholar
  28. 25.
    T. Nagaoka, Y. Matsuda, H. Obara, A. Sawa, T. Terashina, I. Chong, M. Ta-kano, M. Suzuki, Phys. Rev. Lett. 80, 3594 (1998) and therein.ADSCrossRefGoogle Scholar
  29. 26.
    J. Bardeen and M.J. Stephen, Phys. Rev. 140, A1197 (1965)ADSCrossRefGoogle Scholar
  30. 26a.
    P. Noziéres and W.F. Vinen, Phylos. Mag. 14, 667 (1966).ADSCrossRefGoogle Scholar
  31. 27.
    A. van Otterlo, M. Feigel’man, V. Geshkenbein, G. Blatter, Phys Rev. Lett., 75, 3736 (1995).ADSCrossRefGoogle Scholar
  32. 28.
    M.V. Feigel’man, V.B. Geshkenbein, A.J. Larkin, V.M. Vinokur, JETP Lett., 62, 834 (1995).ADSGoogle Scholar
  33. 29.
    Y. Kato, J. Phys Soc Jpn. 68, 3798 (1999).ADSCrossRefGoogle Scholar
  34. 30.
    F. Gygi, and M. Schlüter, M. Phys. Rev. B 43, 7609 (1991).ADSCrossRefGoogle Scholar
  35. 31.
    G.C. Carter, L.H. Bennett, D.J. Kahan in Metallic Shifts in NMR (Pergamon Press 1977).Google Scholar
  36. 32.
    K. Schwarz, Phys. Rev. B, 42, 2051 (1990).ADSCrossRefGoogle Scholar
  37. 32a.
    Y. Ohta, W. Koshibae, S. Maekawa, J. Phys. Soc. Jpn. 61, 2198 (1992)CrossRefGoogle Scholar
  38. 32b.
    K. Hanzawa, J. Phys Soc. Jpn, 62, 3302 (1993).ADSCrossRefGoogle Scholar
  39. 33.
    G. Zheng, Y. Kitaoka, K. Ishida, K. Asayama, J. Phys Soc. Jpn. 64, 2524 (1995).ADSCrossRefGoogle Scholar
  40. 34.
    H. Yasuoka, in Spectroscopy of Mott Insulator and Correlated Metals, edited by A. Fujimori and Y. Tokura p.213 (Springer Series in Solid-State Sciences, Vol.119).Google Scholar
  41. 35.
    A.A. Gippius, E.V. Antipov, W. Hoffmann, K. Lueders, Physca C 276, 57 (1997).ADSCrossRefGoogle Scholar
  42. 36.
    K. Kumagai, K. Nozaki, and Y. Matsuda, Phys. Rev. B 63, 144502 (2001).ADSCrossRefGoogle Scholar
  43. 37.
    K. Muller, M. Mali, J. Roos, O. Brinkmann, Physica C162–164, 173 (1989)Google Scholar
  44. 37a.
    A. Suter, M. Mali, J. Roos, D. Brinkmann, J. Karpinski, E. Kaldis, Phys. Rev. B 56, 5542 (1997).ADSCrossRefGoogle Scholar
  45. 38.
    H. Ikuta, N. Hirota, Y. Nakayama, K. Kishio, K. Kitazwa, Phys Rev. Lett. 70, 2166 (1993). T. Hagaguri, private communication.ADSCrossRefGoogle Scholar
  46. 39.
    Y. Matsuda and S. Komiyama, Phys. Rev. Lett. 69, 3228 (1992).ADSCrossRefGoogle Scholar
  47. 40.
    For example , E.B. Sonin, Phys Rev. B 55, 485 (1997).ADSCrossRefGoogle Scholar
  48. 41.
    Z.D. Wang, Jinming Dong, C.S. Ting, Phys Rev. Lett. 72, 3875 (1994).ADSCrossRefGoogle Scholar
  49. 42.
    P. Ao , J. Phys. C, 10, L677 (1998).Google Scholar
  50. 43.
    A.T. Dorsey, Phys. Rev. B 46, 8376 (1992).ADSCrossRefGoogle Scholar
  51. 44.
    N.B. Kopnin, B.J. Ivlev, V.A. Kalatsky, J. Low Temp. Phys. 90, 1 (1993).ADSCrossRefGoogle Scholar
  52. 45.
    V.M. Vinokur, V.B. Geshkenbein, M.V. Feigel’man, G. Blatter, Phys. Rev. Lett. 71, 1242 (1993).ADSCrossRefGoogle Scholar
  53. 46.
    G. D’Anna, V. Berseth, L. Forró, A. Erb, E. Walker, Phys Rev. Lett. 81, 2530 (1998); W. Göb, W. Liebich, W. Lang, S. Puica, R. Sobolewski, R. Rössler, J.D. Pedarnig, D. Bäuerle, Phys. Rev. B, in press, (2000).ADSCrossRefGoogle Scholar
  54. 47.
    N.B. Kopnin, and V.M. Vinokur, Phys. Rev. Lett. 83, 4864 (1999).ADSCrossRefGoogle Scholar
  55. 47a.
    R. Ikeda, Physica C 316, 189 (1999).ADSCrossRefGoogle Scholar
  56. 48.
    A. G. Aronov, S. Hikami, and A. I. Larkin, Phys. Rev. B 51, 3880 (1995).ADSCrossRefGoogle Scholar
  57. 49.
    We note that several authors have raised critisism on the derivation of Ref. [27]; E. Simanek, Phys. Lett. A 221, 277 (1996), M. Stone, cond-mat/9708017ADSCrossRefGoogle Scholar
  58. 49a.
    G.E. Volovik, JETP Lett. 65, 676 (1997)ADSCrossRefGoogle Scholar
  59. 49b.
    A. Tanaka, and M. Machida, Physica C 313, 141 (1999).ADSCrossRefGoogle Scholar
  60. 50.
    A. Ino, T. Mizokawa, A. Fujimori, K. Tamasaku, H. Eisaki, S. Uchida, T. Kimura, T. Sasgawa, K. Kishio, Phys. Rev. Lett. 79, 2101 (1997). We take µ as the chemical potential of the electron.ADSCrossRefGoogle Scholar
  61. 51.
    J. Schoenes, E. Kaldis, J. Karpinski, Phys Rev. B 48, 16869 (1993).ADSCrossRefGoogle Scholar
  62. 52.
    V.B. Geshkenbein, L.B. Ioffe LB, and A.I. Larkin, Phys . Rev. B 55, 3173 (1997).ADSCrossRefGoogle Scholar
  63. 53.
    N.B. Kopnin, and A.V. Lopatin, Phys Rev. B 51, 15291 (1995).ADSCrossRefGoogle Scholar
  64. 54.
    N. Nagaosa and P.A. Lee, Phys Rev. B 45, 966 (1992).ADSCrossRefGoogle Scholar
  65. 55.
    S. Sachidev, Phys Rev. B 45, 389 (1992).ADSCrossRefGoogle Scholar
  66. 56.
    M. Ogata, unpublished.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Yuji Matsuda
  • Ken-ichi Kumagai

There are no affiliations available

Personalised recommendations