Estrogen Receptor-Cofactor Interactions as Targets for Novel Drug Discovery

  • J. D. Norris
  • C. Chang
  • D. P. McDonnell
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 34)


The steroid hormone estrogen is a key regulator of the processes involved in cellular differentiation and proliferation. Estrogen is most notably involved in the precise neuro-endocrine control of ovulation as well as in determining secondary sexual characteristics in developing females. However, emerging evidence suggests that estrogens have much broader effects on human physiology. It is now well-established that estrogen is involved in the maintenance of skeletal integrity, triglyceride balance, and behavioral responses in both males and females (Bertelli et al. 1988; Love et al. 1992; Ogawa et al. 1997). In addition to these normal physiological actions of estrogen, the hormone has also been implicated in the development and progression of breast cancer, a disease that afflicts one in eight women. Anti-estrogens, compounds that bind to the estrogen receptor (ER) and oppose the mitogenic actions of estrogen, have therefore become frontline breast cancer therapeutics. In simplest terms, anti-estrogens work by competing for agonist binding to the ER and preventing it from becoming activated (McDonnell 1999). The first anti-estrogen developed for use as a breast cancer treatment was tamoxifen (Jordan and Murphy 1990).


Estrogen Receptor Nuclear Receptor Partial Agonist Activity Human Estrogen Receptor Estrogen Receptor Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan X, Sauter G, Kalioniemi O, Trent JM, Meltzer PS (1997) AIB1, a steroid receptor coactiva tor amplified in breast and ovarian cancer. Science 277:965–968PubMedCrossRefGoogle Scholar
  2. Berry M, Metzger D, Chambón P (1990) Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J 9:2811–2818PubMedGoogle Scholar
  3. Bertelli G, Pronzoto P, Amoroso D (1988) Adjuvant tamoxifen in primary breast cancer: influence on plasma lipids and antithrombin III. Breast Cancer Res Treat 12:307–310PubMedCrossRefGoogle Scholar
  4. Black LJ, Sato M, Rowley ER, Magee DE, Bekele A, Williams DC, Cullinan GJ, Bendele R, Kauffman RF, Bensch WR, Frolik CA, Termine JD, Bryant HU (1994) Raloxifene (LY139481 HCL)prevent bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J Clin Invest 93:63–69PubMedCrossRefGoogle Scholar
  5. Blanco JCG, Minucci S, Lu JM, Walker KK, Chen HW, Evans RW, Nakatani Y, Ozato K (1998) The histone acetylase PCAF is a nuclear receptor coacti-vator. Genes Dev 12:1638–1651PubMedCrossRefGoogle Scholar
  6. Brzozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Oilman L, Greene GL, Gustafsson J and Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758PubMedCrossRefGoogle Scholar
  7. Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M and Evans RM (1996) Role of CBP/p300 in nuclear receptor signaling. Nature 383:99–103PubMedCrossRefGoogle Scholar
  8. Chang C-Y, Norris JD, Gron H, Paige LA, Hamilton PT, Kenan DJ, Fowlkes D, McDonnell DP (1999) Dissection of the LXXLL nuclear receptor-coac-tivator interaction motif using combinatorial peptide libraries: Discovery of peptide antagonists of estrogen receptors α and β. Mol Cell Biol 19:8226–8239PubMedGoogle Scholar
  9. Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM (1997) Nuclear receptor coactivator ACTR is a novel histone acetytransferase and forms a multimenc activation complex with P/CAF and CBP/p300. Cell 90:569–580PubMedCrossRefGoogle Scholar
  10. Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457PubMedCrossRefGoogle Scholar
  11. Couse JF, Lindzey J, Grandien K, Gustafsson J-A, Korach KS (1997) Tissue distribution and quantitative analysis of estrogen receptor-ос (ERα) and estrogen receptor-β (ERβ) messenger ribonucleic acid in wild-type and ERα-knockout mouse. Endocrinology 138:4613–4621PubMedCrossRefGoogle Scholar
  12. Ding XF, Anderson DM, Ma H, Hong H, Uht RM, Kushner PJ, Stallcup MR (1998) Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIPl) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol Endocrinol 12:302–313PubMedCrossRefGoogle Scholar
  13. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895PubMedCrossRefGoogle Scholar
  14. Gill G, Ptashne M (1988) Negative effect of the transriptional activator GAL4. Nature 334:721–724PubMedCrossRefGoogle Scholar
  15. Hall JM, McDonnell DP (1999) The estrogen receptor β-isoform (ERβ) of the human estrogen receptor modulates ERoc transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 140:5746–5753PubMedCrossRefGoogle Scholar
  16. Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736PubMedCrossRefGoogle Scholar
  17. Heinzel T, Lavinsky RM, Mullen T, Soderstom M, Iaherty CD, Torchina J, Yang W, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK, Rosenfeld MG (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48PubMedCrossRefGoogle Scholar
  18. Hong H, Kohli K, Garabedian MJ, Stallcup MR (1997) GRIPl, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 17:2735–2744PubMedGoogle Scholar
  19. Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR (1996) GRIPl, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci USA 93:4948–4952PubMedCrossRefGoogle Scholar
  20. Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, Rosenfeld MG (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–403PubMedCrossRefGoogle Scholar
  21. Ing N, Beekman J, Tsai S, Tsai M-J, O’Malley B (1992) Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J Biol Chem 267:17617–17623PubMedGoogle Scholar
  22. Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB (1997) The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 11:693–705PubMedCrossRefGoogle Scholar
  23. Jordan VC, Murphy CS (1990) Endocrine pharmacology of anti-estrogens as antitumor agents. Endocr Rev 11:578–610PubMedCrossRefGoogle Scholar
  24. Kalkhoven E, Valentine JE, Heery DM, Parker MG (1998) Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J 17:232–243PubMedCrossRefGoogle Scholar
  25. Katzenellenbogen BS, Montano MM, Ekena ME, Mclnerney EM (1997) Anti-estrogens: Mechanisms of action and resistance in breast cancer. Breast Cancer Res Treat 44:23–38PubMedCrossRefGoogle Scholar
  26. Kauffman RF, Bensch WR, Roudebush RE, Cole HW, Bean JS, Phillips DL, Monroe A, Culligan GJ, Glasebrook RE, Bryant HU (1997) Hypo-cholesterolemic activity of raloxifene (LY139481): Pharmacological characterization as a selective estrogen receptor modulator. JPET 280:146–153Google Scholar
  27. Kay BK, Kurakin AV, Hyde-DeRuyscher R (1998) From peptides to drugs via phage display. DDT 3:370–378CrossRefGoogle Scholar
  28. Klein-Hitpass L, Ryffel GU, Heitlinger E, Cato ACB (1988) A 13 bp palindrome is a functional estrogen responsive element and interacts specifically with estrogen receptor. Nucl Acids Res 16:647–663PubMedCrossRefGoogle Scholar
  29. Kuiper GGJM, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson J (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors a and β. Endocrinology 138:863–870PubMedCrossRefGoogle Scholar
  30. Kuiper GGJM, Enkmark E, Pelto-Huikko M, Nilsson S (1996) Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93:5925–5930PubMedCrossRefGoogle Scholar
  31. Lerner LJ, Jordan VC (1990) Development of anti-estrogens and their use in breast cancer: Eighth chain memorial award lecture. Cancer Res 50:4177–4189PubMedGoogle Scholar
  32. Li H, Gomes PJ, Chen JD (1997) RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF-2. Proc Natl Acad Sci USA 94:8479–8484PubMedCrossRefGoogle Scholar
  33. Love RR, Mazess RB, Barden HS, Epstein S, Newcomb PA, Jordan VC, Carbone PP, DeMets DL (1992) Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. New Engl J Med 326:852–856PubMedCrossRefGoogle Scholar
  34. McDonnell DP (1999) The molecular pharmacology of SERMs. TEМ 10:301–311Google Scholar
  35. McDonnell DP, Clemm DL, Hermann T, Goldman ME, Pike JW (1995) Analysis of estrogen receptor function in vitro reveals three distinct classes of an-tiestrogens. Mol Endocrinol 9:659–669PubMedCrossRefGoogle Scholar
  36. McDonnell DP, Lieberman BA, Norris J (1995) Development of tissue-selective estrogen receptor modulators. In: Organ-Selective Actions of Steroid Hormones (DT Baird, G Schutz, R Krattenmacher, eds) Springer-Verlag, Berlin pp 1–28CrossRefGoogle Scholar
  37. Meyer ME, Gronemeyer H, Turcotte B, Bocquel MT, Tasset D (1989) Steroid receptors compete for factors that mediate their enhancer function. Cell 57:433–442PubMedCrossRefGoogle Scholar
  38. Montano MM, Jaiswal AK, Katzenellenbogen BS (1998) Transcriptional regulation of the human quinone reductase gene by antiestrogen-liganded estrogen receptor-α and estrogen receptor-β. J Biol Chem 273:25443–25449PubMedCrossRefGoogle Scholar
  39. Moore JT, McKee DD, Moore LB, Jones SA, Su J-L, Slentz-Kesler K, Home EL, Kliewer SA, Lehman JM, Willson TM (1998) Cloning, ligand binding and functional activity of human estrogen receptor β isoforms. Biochem Biophys Res Comm 247:75–78PubMedCrossRefGoogle Scholar
  40. Mosselman S, Polman J, Dijkema R (1996) ERb: identification and characterization of a novel human estrogen receptor. FEBS Let 392:49–53CrossRefGoogle Scholar
  41. Nagy L, Kao H, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3 A, and histone deacetylase. Cell 89:373–380PubMedCrossRefGoogle Scholar
  42. Norris JD, Paige LA, Christensen DJ, Chang, C-Y, Huacani MR, Fan D, Hamilton PT, Fowlkes DM, McDonnell DP (1999) Peptide antagonists of the human estrogen receptor. Science 285:744–746PubMedCrossRefGoogle Scholar
  43. Ogawa S, Inoue S, Watanabe T, Hiroi H, Orimo A, Hosoi T, Ouchi T, Muramatsu M (1998) The complete primary structure of human estrogen receptor β (hERβ) and its heterodimerization with ERα in vivo and in vitro. Biochem Biophys Res Comm 243:122–126PubMedCrossRefGoogle Scholar
  44. Ogawa S, Lubahn DB, Korach KS, Pfaff DW (1997) Behavioral effects of estrogen gene disruption in male mice. Proc Natl Acad Sci USA 94:1476–1481PubMedCrossRefGoogle Scholar
  45. Ogryzko VV, Schlitz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBР are histone acetyltransferases. Cell 87:953–959PubMedCrossRefGoogle Scholar
  46. Onate SA, Tsai SY, Tsai M, O’Malley BW (1995) Sequence and characterizations of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357PubMedCrossRefGoogle Scholar
  47. Paech K, Webb P, Kuiper GGJM, Nilsson S, Gustafsson J, Kushner PJ, Scan-Ian TS (1997) Differential ligand activation of estrogen receptors ERα and ERβ at API sites. Science 277:1508–1510PubMedCrossRefGoogle Scholar
  48. Paige LA, Christensen DJ, Grøn H, Norris JD, Gottlin EB, Padilla KM, Chang C-Y, Bailas LM, Hamilton PT, McDonnell DP, Fowlkes DM (1999) Estrogen receptor (ER) modulators each induce distinct conformational changes in ERα and ERβ. Proc Natl Acad Sci USA 96:3999–4004PubMedCrossRefGoogle Scholar
  49. Rachez C, Lemon BD, Suldan Z, Bromleigh V, Gamble M, Naar AM, Erd-jument-Bromage H, Tempst P, Freedman LP (1999) Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398:824–828PubMedCrossRefGoogle Scholar
  50. Rachez C, Gamble M, Chang CB, Atkins GB, Lazar MA, Freedman LP (2000) The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functinally distinct complexes. Mol Cell Biol 20:2718–2726.PubMedCrossRefGoogle Scholar
  51. Sadovsky Y, Webb P, Lopez G, Baxter JD, Fitzpatrick PM, Gizang-Ginsberg E, Cavailles V, Parker MG, Kushner PJ (1995) Transcriptional activators differ in their responses to overexpression of TATA-box-binding protein. Mol Cell Biol 15:1554–1563PubMedGoogle Scholar
  52. Sato M, Rippy MK, Bryant HU (1996) Raloxifene, tamoxifen, nafoxidine, or estrogen effects on reproductive and nonreproductive tissues in ovariecto-mized rats. FASEB J 10:905–912PubMedGoogle Scholar
  53. Shiau AK, Barstad D, Loria PM, Chang L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interactin by tamoxifen. Cell 95:927–937PubMedCrossRefGoogle Scholar
  54. Smith CL, Nawaz Z, O’Malley BW (1997) Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hy-droxytamoxifen. Mol Endocrinol 11:657–666PubMedCrossRefGoogle Scholar
  55. Smith DF, Toft DO (1993) Steroid receptors and their associated proteins. Mol Endocrinol 7:4–11PubMedCrossRefGoogle Scholar
  56. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai S, Tsai M-J, O’Malley BW (1997) Steroid receptor coactivator-1 is a histone acetylase. Nature 389:194–198PubMedCrossRefGoogle Scholar
  57. Takeshita A, Yen PM, Misiti S, Cardona GR, Liu Y, Chin WW (1996) Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator. Endocrinology 137:3594–3597PubMedCrossRefGoogle Scholar
  58. Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG (1997) The transcriptional co-activator p/CIP binds CBР and mediates nuclear-receptor function. Nature 387:677–684PubMedCrossRefGoogle Scholar
  59. Voegel JJ, Heine MJS, Zechel C, Chambon P, Gronemeyer H (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 15:3667–3675PubMedGoogle Scholar
  60. Wakeling AE, Dukes M, Bowler J (1991) A potent specific pure anti-estrogen with clinical potential. Cancer Res 51:3867–3873PubMedGoogle Scholar
  61. Webb P, Nguyen P, Shinsako J, Anderson C, Feng W, Nguyen MP, Chen D, Huang S, Subramanian S, Mclnerney E, Katzenellenbogen BS, Stallcup MR, Jushner PJ (1998) Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol Endocrinol 12:1605–1618PubMedCrossRefGoogle Scholar
  62. Willson TM, Norris JD, Wagner BL, Asplin I, Baer P, Brown HR, Jones SA, Henke B, Sauls H, Wolfe S, Morris DC, McDonnell DP (1997) Dissection of the molecular mechanism of action of GW5638, a novel estrogen receptor ligand, provides insights into the role of estrogen receptor in bone. Endocrinology 138:3901–3911PubMedCrossRefGoogle Scholar
  63. Yang NN, Bryant HU, Hardikar S, Sato M, Galvin RJS, Glasebrook AL, Termine JD (1996) Estrogen and raloxifene stimulate transforming growth factor- β3 gene expression in rat bone: A potential mechanism for estrogen- or raloxifene-mediated bone maintenance. Endocrinology 137:2075–2084PubMedCrossRefGoogle Scholar
  64. Yao T, Ku G, Zhou N, Scully R, Livingston DM (1996) The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc Natl Acad Sci USA 93:10626–10631PubMedCrossRefGoogle Scholar
  65. Yuan C-X, Ito M, Fondell JD, Fu Z-Y, Roeder RG (1998) The TRAP220 component of the thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-depend-ent fashion. Proc Natl Acad Sci USA 95:7939–7944PubMedCrossRefGoogle Scholar
  66. Zamir I, Dawson J, Lavinsky RM, Glass CK, Rosenfeld MG, Lazar MA (1997) Cloning and characterization of a corepressor and potential component of the nuclear receptor repression complex. Proc Natl Acad Sci USA 94:14400–14405PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J. D. Norris
  • C. Chang
  • D. P. McDonnell

There are no affiliations available

Personalised recommendations