Syntheses of 13C-Labelled Polycyclic Aromatic Compounds

  • C. Garms
  • W. Francke


The use of stable isotopes, especially 13C, is well established for investigation of metabolic pathways or biosysntheses, as a tool in diagnostic medicine and to generally trace the fate of organic compounds in the environment. Excellent techniques to monitor the isotope in labelled compounds include nuclear magnetic resonance (13C-NMR-spectroscopy) (Marshall 1983; Breitmaier and Voelter 1987) and (combustion) isotope-ratio-monitoring mass spectrometry (IRM-MS) (Merrit et al. 1994; Wong et al. 1995; Newman 1996; Brenna 1999).


Polycyclic Aromatic Hydrocarbon Diethyl Ether Crude Product Benzylic Alcohol Magnesium Sulphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agranat I, Shish YS (1976) The scope of the Haworth-Synthesis. J Chem Educ 53: 488–493CrossRefGoogle Scholar
  2. Bisagni E, Pépin JJ, André-Louisfert J (1970) Dérivés partiellement hydrogénés du diméthyl-7, 12-benzo[a]anthracène.–Preparation des matières premières. Bull Soc Chim Fr 37: 3023–3031Google Scholar
  3. Breitmaier E, Voelter W (1987) 13C-NMR-Spectroscopy, Methods and Applications. Weinheim, VCH. GermanyGoogle Scholar
  4. Brenna JF (1999) High-precision gas isotope-ratio-mass spectrometry: Recent Advances in instrumentation and biomedical applications. Acc Chem Res 27: 340–346CrossRefGoogle Scholar
  5. Brown WG, Bluestein B (1949) Dehydration of 9-Fluorenylcarbinol: A new Synthesis of Phenanthrene. J Amer Chem Soc 62: 3256–3257Google Scholar
  6. Goehler KD, Schütte HR (1970) Synthesen radioaktiv-markierter Verbindungen. Darstellung von 9-Fluorenyl-[9,10–14C]-n-butylester. Z Chem 10: 190–191CrossRefGoogle Scholar
  7. Huang-Minlon (1946) A simple modification of the Wolff-Kischner Reduction. J Am Chem Soc 68: 2487–2488CrossRefGoogle Scholar
  8. Isaev IS, Buraev VI, Regvhukin AI, Kaptyag VA (1972) Complexes of aromatic hydrocarbons with metal halides and hydrogen halides. X. Valence state of a certain atom to which a proton had been added. J Org Chem USSR 8: 1479–1484Google Scholar
  9. Klassen SE, Daub GH, VanderJagt DL (1983) Carbon-13 Labelled Benzo[a]pyrene and Derivatives. 4. Labelling the 7–10 Positions. J Org Chem 23: 4361–4366CrossRefGoogle Scholar
  10. Marshall JL (1983) Carbon-Carbon and Carbon-Proton NMR Couplings. Deerfield Beach, Florida, VCHGoogle Scholar
  11. McDowell BL, Smolinsky G, Rapaport H (1962) 1,2-Dihydrocyclopenta[jk]fluorene. J Amer Chem Soc 84: 3531–3538Google Scholar
  12. Merrit DA, Brand WA, Hayes JM (1994) Isotope-ratio-monitoring gas chromatography mass spectrometry — methods for isotopic calibration. Org Geochem 21: 53–58Google Scholar
  13. Newman A (1996) The precise world of isotope ratio MS. Analytical Chem 68: A373—A377 Soderquist A, Hughes CD, Horton WJ, Facelli JC, Grant DM (1992) Carbon-13 Chemical Shifts Tensors in Aromatic Compounds. 3. Phenanthrene and Triphenylene. J Am Chem Soc 114: 2826–2832Google Scholar
  14. Staab HA, Haenel M (1970) [1–13C1-Naphthalin: Synthese, NMR-Spektren, ESR-Spektrum des Radikalanions and Autoisomerisationsversuche. Chem Ber 103: 1095–1100Google Scholar
  15. Uhlig F, Snyder HR (1960) Polyphosphoric acid as a reagent in organic chemistry. Adv Org Chem 1: 35–81Google Scholar
  16. Walker D, Hiebert JD (1966) 2,3-Dichloro-5,6-Dicyanobenzoquinone and its reaction. Chem Rev: 153–195Google Scholar
  17. Wong WW, Hackey D, Zhang S, Clarke LL (1995) Accuracy and precision of gas chromatography combustion isotope ratio mass spectroscopy for stable carbon isotope ratio measurements. Rapid Comm Mass Spectrom 9: 1007–1011CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • C. Garms
    • 1
  • W. Francke
    • 1
  1. 1.Institute for Organic ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations