Supercritical Water and Supercritical Carbon Dioxide for Cleaning of Soil Material

  • G. Brunner
  • B. Misch
  • A. Firus
  • K. Nowak


Thermal treatment of contaminated soil has gained great interest. If biological methods have no sufficient cleaning effect, the soil material must be deposited or incinerated. Thermal treatment of contaminated soil with supercritical water (Tc = 374 °C, Pc = 22.1 MPa), in contrast to incineration, leads to clean soil material without creating nitrogen oxides and sulfur dioxide. Depending on the type of contamination, reaction products are CO2, H2O, inorganic acids and highly volatile hydrocarbons. The process is carried out at elevated pressures (25 MPa) and, compared to incineration, at moderate temperatures (375–600 °C). Residence times are short (< 120 s) and reaction products can be controlled by conditions of state relating to the oxidation (Brunner 1994).


Supercritical Fluid Supercritical Carbon Dioxide Soil Material Physical Treatment Supercritical Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barner HE, Huang CY, Johnson T, Jacobs G, Martch MA, Killilea WR (1982) Journal of Hazardous Materials 31: 1–17CrossRefGoogle Scholar
  2. Brunner G (1993) Verfahren zur Oxidation von organischen und anorganischen Stoffen mit Sauerstoff in wässeriger Umgebung. Patentschrift DE 41 32 915 ClGoogle Scholar
  3. Brunner G (1994) Extraction and Destruction of Waste with Supercritical Water. In: Kiran E, Levelt Sengers JMH (eds) Supercritical Fluids. Kluwer Academic Publishers, pp 697–705Google Scholar
  4. Finis A (1996) Reinigung von Bodenmaterial durch Extraktion und Reaktion mit überkritischem Wasser und Kohlendioxid. Thesis, Technische Universität Hamburg-HarburgGoogle Scholar
  5. Finis A, Brunner G (1995) Hydrolytic and Thermolytic Clean-Up of Contaminated Soil with Supercritical Water. In: van den Brink WJ, Bosman R, Arendt F (eds), Contaminated Soil ‘85. Kluwer Academic Publishers, p 1023–1028Google Scholar
  6. Finis A, Brunner G (1996) Continuous Extraction of Contaminated Soil with Supercritical Wa-ter. In: von Rohr PR, Trepp C (eds) Process Technology Proceedings, vol 12, p 179–184Google Scholar
  7. Finis A, Weber W, Brunner G (1997) Supercritical carbon dioxide for the removal of hydrocar-bons from contaminated soil. Sep Sci & Techn 32: 1403–1414CrossRefGoogle Scholar
  8. Fischer J, Hofmann H, Luft G, Wendt H (1980) Fundamental investigations and electrochemical engineering aspects concerning an advanced concept for alkaline water electrolysis. AIChE Journal 26: 794CrossRefGoogle Scholar
  9. Franck EU (1961) Überkritisches Wasser als elektrolytisches Lösungsmittel. Angewandte Chemie 10: 309–322CrossRefGoogle Scholar
  10. Härtel G, Peter S, Tunn W (1980) Über die Acidität wäßriger Lösungen der Chloride des Natriums, Calciums und Magnesiums in Anwesenheit von Kohlendioxid bei hohen DrückenGoogle Scholar
  11. Hirth T (1992) Pyrolyse, Hydrolyse, und Oxidation kohlenstoffhaltiger Verbindungen in überkritischem Wasser bei Drücken bis 1000 bar. Thesis, Universität KarlsruheGoogle Scholar
  12. Killilea W, Swallow K, Malinowski K, Staszak C (1989) The modar process for the destruction of hazardous organic wastes — Field test of a pilot scale unit. Waste Management 9: 19–26CrossRefGoogle Scholar
  13. Michel S (1992) Grundlagenuntersuchung zur Extraktion von polyzyklischen aromatischen Kohlenwasserstoffen aus kontaminierten Böden mit überkritischem Kohlendioxid. Thesis, Universität DortmundGoogle Scholar
  14. Misch B (2001) Kontinuierliche Extraktion von Feststoffen und Reinigung mischkontaminierten Bodenmaterials mit überkritischen Fluiden. Thesis, Technische Universität Hamburg-HarburgGoogle Scholar
  15. Misch B, Brunner G (1999) An alternative method of oxidizing aqueous waste in supercritical water, Oxygen supply by means of electrolysis. In: Steam, water and Hydrothermal Systems, Proc 13th Int Conf On Properties of Water and Steam. Toronto, CanadaGoogle Scholar
  16. Misch B, Brunner G (2000) Deutsche Forschungsgemeinschaft (eds) Sonderforschungsbereich 188, TP A 10, Final report 1998–1999–2000Google Scholar
  17. Misch B, Finis A, Brunner G (2000) An alternative method of oxidizing aqueous waste. Journal of Supercritical fluids 17: 227–237CrossRefGoogle Scholar
  18. Mishra VS, Mahajani VV, Joshi JB (1995) Wet Air Oxidation. Industrial & Engineering Chemistry Research 34: 2–48CrossRefGoogle Scholar
  19. Modell M (1982) Processing Methods for the Oxidation of Organics in Supercritical Water. United States Patent B1 4338199Google Scholar
  20. Nowak K (1996) Reinigung kontaminierter Bodenmaterialien mit überkritischem Wasser. Thesis, Technische Universität Hamburg-Harburg, 1995, Printed by Shaker, AachenGoogle Scholar
  21. Ogata Y, Yasuda M, Hine F (1988) Effects of the operating pressure on the performance of water electrolysis cells at elevated temperatures. J of the Electrochemical Soc: Electrochemical Science and Technology: 2976Google Scholar
  22. Read AJ (1975) The first ionization constant of carbonic acid from 25 to 250 °C and to 2000 bar. J of solution chemistry 4, 1: 52–70Google Scholar
  23. Savage PE, Gopalan S, Mizan TI, Martino CJ, Brock EE (1995) Reactions at Supercritical Conditions: Applications and Fundamentals. AIChE Journal 41: 1723–1778Google Scholar
  24. Schleußinger A (1996) Einfluß von Schleppmitteln auf die Hochdruckextraktion am Beispiel der Bodensanierung. Thesis, Universität DortmundGoogle Scholar
  25. Takenouchi S, Kennedy G (1964) The binary system H2O — CO2 at high temperatures and pressures. American J of Science 262,pp 1055–1074CrossRefGoogle Scholar
  26. Toews K, Shroll R, Wai CM (1995) pH-Defining Equilibrium between Water and Supercritical CO2. Influence on SFE of Organics and Metal Chelates. Anal Chem 67 (22), pp 4040–4043Google Scholar
  27. Wiebe R (1941) The binary system carbon dioxide — water under pressure. Chemical Reviews 29: 475–481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • G. Brunner
    • 1
  • B. Misch
    • 1
  • A. Firus
    • 2
  • K. Nowak
    • 3
  1. 1.Department of Thermal Process EngineeringTechnical University of Hamburg-HarburgHamburgGermany
  2. 2.ZT-TEBayer AGLeverkusenGermany
  3. 3.Bremer Sonderabfall Beratungsgesellschaft mbHBremenGermany

Personalised recommendations