Formation of Residues of Organic Pollutants Within the Soil Matrix — Mechanisms and Stability

  • M. Kästner
  • H. H. Richnow


All anthropogenic organic chemicals form non-extractable residues to some extent when entering soils. This well-known phenomenon has been studied for many years especially in the field of soil agrochemistry. Similar processes have been observed during the bioremediation of oil-contaminated soils (see table 16.3) and the residue formation of toxic and carcinogenic polycyclic aromatic hydrocarbons is of particular concern. Apart from mineralisation, the formation of non-extractable residues is certainly the major sink of anthropogenic pollutants in soils. However, macromolecular non-extractable xenobiotic residues are difficult to examine by conventional analytical techniques. Therefore, formation, structure and significance of these macromolecular residues in the environment are still unknown today.


Polycyclic Aromatic Hydrocarbon Soil Organic Matter Humic Substance Fulvic Acid Pesticide Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey GW, White JL (1964) Review of adsorption and desorption of organic pesticides by soil colloids with implication concerning pesticide bioactivity. J Agric Food Chem 12: 324–332CrossRefGoogle Scholar
  2. Baldock JA, Oades JM, Vassallo AM, Wilson MA (1989) Incorporation of uniformly labeled 13C-glucose carbon into the organic fraction of a soil. Carbon balance and CP/MAS-13C-NMR measurements. Soil Biol Biochem 27: 725–746Google Scholar
  3. Berry DF, Boyd SA (1984) Oxidative coupling of phenols and anilines by peroxidase: structure-activity relationships. Soil Sci Soc Am J 48: 565–569CrossRefGoogle Scholar
  4. Berry DF, Boyd SA (1985) Decontamination of soil through enhanced formation of bound residues. Environ Sci Technol 19: 1132–1133CrossRefGoogle Scholar
  5. Bollag JM (1983) Cross-coupling of humus constituents and xenobiotic substances. In: Aquatic and terrestrial humic material. Christman RF, Gjessing ET (eds) Ann Arbor Publishers, Michigan, USA, pp 127–141Google Scholar
  6. Bollag JM (1992) Decontaminating soil with enzymes. Environ Sci Technol 26: 1876–1881CrossRefGoogle Scholar
  7. Bollag JM, Bollag WB (1990) A model for enzymatic binding of pollutants in the soil. Intern J Environ Anal Chem 39: 147–157CrossRefGoogle Scholar
  8. Bollag JM, Loll, M J (1983) Incorporation of xenobiotics into soil humus. Experientia 39: 12211231Google Scholar
  9. Bollag JM, Shuttleworth KL, Anderson DH (1988) Laccase-mediated detoxification of phenolic compounds. Appl Env Microbiol 54: 3086–3091Google Scholar
  10. Brotkorb TS, Legge RL (1992) Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Appl Environ Microbiol 58: 31173121Google Scholar
  11. Calderbank A (1989) The occurrence and significance of bound pesticide residues in soil. Rev Environ Contam Toxicol 108: 71–103CrossRefGoogle Scholar
  12. Cerniglia C E, Heitkamp M A (1989) Microbial metabolism of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. In: Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. Varanasi U (ed) CRC Press, Boca Raton, pp 41–68Google Scholar
  13. Claus H, Filip Z (1990) Effects of clays and other solids on the activity of phenoloxidases produced by some fungi and actinomycetes. Soil Biol Biochem 22: 483–488CrossRefGoogle Scholar
  14. Craven A (2000) Bound residues of organic compounds in the soil: the significantce of pesticide persistence in soil and water: a European regulatory view. Environmental Pollution 108: 1518CrossRefGoogle Scholar
  15. Dawel G, Kästner M, Michels J, Poppitz W, Günther W, Fritsche W (1997) Structure of a laccase-mediated product of coupling of 2,4-diamino-6-nitrotoluene to guiacol, a model for coupling of 2,4,6 trinitrotoluene metabolites to a humic organic soil matrix. Appl Environ Microbiol 63: 2560–2565Google Scholar
  16. Dec J, Haider K, Benesi A, Rangasvamy V, Schäfer A, Plücken U, Bollag JM (1997) Analysis of soil bound residues of 13C-labelled fungicide Cyprodinil by NMR-spectroscopy. Environ Sci Technol 31: 1128–1135CrossRefGoogle Scholar
  17. Domsch KH (1992) Pestizide im Boden — Mikrobieller Abbau and Nebenwirkungen auf Mikroorganismen. VCH Verlagsgesellschaft, Plankstadt, GermanyGoogle Scholar
  18. Eschenbach A, Kästner M, Wienberg R, Mahro B (1995) Microbial PAH degradation in soil material from a contaminated site — mass balance experiments with Pleurotus ostreatus and different 14C-PAH. In: Contaminated soil 1995. van den Brink WJ, Bosman R, Arend F (eds) Kluver Academic Publishers, Dodrecht, The Netherlands, pp 377–378Google Scholar
  19. Eschenbach A, Wienberg R, Mahro B (1998) Fate and stability of non-extractable residues of 14C-PAH in contaminated soils under environmental stress conditions. Environ Sci Technol 32: 2585–2590CrossRefGoogle Scholar
  20. Eschenbach A, Wienberg R, Mahro B (1996) Entstehung and Langzeitstabilität von nicht extrahierbaren PAK-Rückständen im Boden. In: Biologischer Abbau von polyzyklischen aromatischen Kohlenwasserstoffen. Cuno M (ed) Schriftenreihe — Biologische Abwasserreinigung 7, (SFB 193), Technische Universität Berlin, Germany, pp 63–80Google Scholar
  21. Evans WC, Fernley FIN, Griffiths E (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudomonas, the ring fission mechanism. Biochem J 91: 819–831Google Scholar
  22. Filip Z, Preusse T (1985) Phenoloxidierende Enzyme–ihre Eigenschaften and Wirkungen im Boden. Pedobiologica 28: 133–142Google Scholar
  23. Führ F (1987) Non-extractable pesticide residues in soil. In: Pesticide and biotechnology. Greenhalgh R, Roberts TR (eds) Proc 6th Congr Pestic Chem, IUPAC, Blackwell Scientific Publication, London, UK, pp 381–389Google Scholar
  24. Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Microbial degradation of organic compounds. Gibson DT (ed) Marcel Dekker, New York, USA, pp 181–252Google Scholar
  25. Goodin JD, Weber MD (1995) Persistence and fate of anthracene and benzo(a)pyrene in municipal sludge treated soil. J Environ Qual 24: 271–278CrossRefGoogle Scholar
  26. Grosser RJ, Warshawsky D, Vestal R (1991) Indigenous and enhanced mineralization of pyrene, benzoa]pyrene, and carbazole in soils. Appl Environ Microbiol 57: 3462–3469Google Scholar
  27. Gustafsson 0, Gschwend P (1998) Phase distributions of hydrophobic chemicals in the aquatic environment: existing partitioning models are unable to predict the dissolved component in several common situations. In: Bioavailability of Organic Xenobiotics in the Environment. Block JC, Baveye Ph, Goncharuk VV (eds). NATO ASI Series 64, Kluwer Academic Publishers, The Netherlands, pp 297–326Google Scholar
  28. Guthrie EA, Bortiatynski JM, van Heemst JDH, Richman JE, Hardy KS, Kovach EM, Hatcher PG (1999) Determination of [13C]-Pyrene Sequestration in Sediment Microcosms Using Flash Pyrolysis-GC-MS and 13-C NMR. Environ Sci Technol 33: 119–125CrossRefGoogle Scholar
  29. Haider KM, Martin JP (1988) Mineralization of 14C-labelled humic acids and of humic-acid bond 14C-xenobiotics by Phanerochaete chrysosporium. Soil Biol Biochem 20: 425–429CrossRefGoogle Scholar
  30. Hassett JJ, Banwart WL (1989) The sorption of nonpolar organics by soils and sediments. In: Reactions and movement of organic chemicals in soils. Sawhney BL, Brown K (eds) SSSA Spec Publ 22: 31–44Google Scholar
  31. Hatcher PG, Bortiatynski JM, Minard RD, Dec J, Bollag JM (1993) Use of high resolution 13C NMR to examine enzymatic covalent binding of 13C-labelled 2,4-dichlorophenol to humic substances. Environ Sci Technol 27: 2098–2103CrossRefGoogle Scholar
  32. Hatzinger PB, Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29: 537–545CrossRefGoogle Scholar
  33. Hayes MHB, MacCarthy P, Malcom RL, Swift RS (eds) (1989) Humic substances II - In: Search of structure. Wiley and Sons, Chichester, UKGoogle Scholar
  34. Hedges JI (1988) Polymerisation of humic substances in natural environment. In: Humic substances and their role in the environment. Frimmel FH, Christman RF (eds) Wiley and Sons, Chichester, pp 45–48Google Scholar
  35. Heitkamp MA, Freeman JP, Cerniglia CE (1987) Naphtalene biodegradation in environmental microcosms: Estimates of degradation rates and characterization of metabolites. Appl Environ Microbiol 53: 129–136Google Scholar
  36. Herbes SE, Schwall LR (1978) Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Appl Environ Microbiol 35: 306–316Google Scholar
  37. Hosier KR, Bulman TL, Fowlie PJA (1988) Der Verbleib von Naphtalin, Anthracen and Benz(a)pyren im Boden bei einem fur die Behandlung von Raffinerieabfällen genutztem Gelände. In: Altlastensanierung ‘88. Wolf K, van den Brink WJ, Colon FJ (eds) Kluwer Academic Publisher, Dordrecht Boston London, pp 111–113Google Scholar
  38. Kan AT, Fu G, Thomson MB (1994) Adsorption/Desorption hysteresis in organic pollutant and soil/sediment interaction. Environ Sci Technol 28: 859–867CrossRefGoogle Scholar
  39. Kanaly R, Bartha R, Fogel S, Findlay M (1997) Biodegradation of 14C-Benzo[a]pyrene added in crude oil to uncontaminated soil. Appl Environ Microbiol 63: 4511–4515Google Scholar
  40. Karickhoff SW (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10: 833–845CrossRefGoogle Scholar
  41. Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13: 241–248CrossRefGoogle Scholar
  42. Kästner M, Mahro B (1996) Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl Microbiol Biotechnol 44: 668–675CrossRefGoogle Scholar
  43. Kästner M, Streibich S, Richnow HH, Michaelis W, Fritsche W (1997) Bildung und Schicksal von gebundenen Rückstände aus Umweltschadstoffen im Boden. In: Biologische Sanierung von Rüstungsaltlasten) Berichte zum 3. Statusseminar des Verbundprojektes “Biologische Sanierung von Rüstungsaltlasten” im Umweltbundesamt. Bundesminister für Bildung und Forschung, Projektträgerschaft Abfallwirtschaft und Altlastensanierung im Umweltbundesamt (ed) Berlin, 26.-27.2.1997, pp BI-41Google Scholar
  44. Kästner M, Hofrichter M (2001) Biodegradation of humic substances. In: Biopolymers Vol. 1 — Lignin, humic substances and coal. Steinbüchel A, Hofrichter M (eds.) Wiley-VCH, Weinheim, Germany (in press)Google Scholar
  45. Kästner M, Lotter S, Heerenklage J, Breuer-Jammali M, Stegman R, Mahro B (1995) Fate of 14C-labelled anthracene and hexadecane in compost manured soil. Appl Microbiol Biotechnol 43: 1128–1135CrossRefGoogle Scholar
  46. Kästner M, Sack U, Streibich S, Beyrer M, Fritsche W (1996) Metabolisierung, Mineralisierung und Humifizierung von PAK durch Pilze. In: Biologischer Abbau von polyzyklischen aromatischen Kohlenwasserstoffen. Cuno M (ed) Schriftenreihe — Biologische Abwasserreinigung 7, (SFB 193 ) Technische Universität, Berlin, Germany, pp 41–61Google Scholar
  47. Kästner M, Streibich S, Beyrer M, Richnow HH, Fritsche W (1999) Formation of bound residues during microbial degradation of [14C]-anthracene in soil. Appl Environ Microbiol 65: 18341842Google Scholar
  48. Kästner M (2000). The “humification” process or the formation of refractory soil organic matter. In: Biotechnology, 2nd. Edition, Vol 1 lb; Environmental Processes. Rehm HJ, Reed G, Pithier A, Stadler P (eds) Wiley-VCH, Weinheim, Germany, pp 89–125Google Scholar
  49. Kaufman DD (1976) Bound and conjugated pesticide residues. In: Bound and conjugated pesticide residues. Kaufmann DD, Still GG, Paulson GD, Banda] SK (eds) ACS Symposium Series 29, Am Chem Soc Washington DC, USA, pp 1–10Google Scholar
  50. Kelsey JW, Alexander M (1997) Declining bioavailability and inapropriate estimation of risk of persistent compounds. Environ Tox Chem 16: 582–585CrossRefGoogle Scholar
  51. Khan SU (1982) Bound pesticide residues in soil and plants. Residue Reviews 84: 1–24CrossRefGoogle Scholar
  52. Khan S, Dupont U (1987) Bound pesticide residues and their bioavailability. In: Pesticide Sci-ence and Biotechnology. Greenhalgh R, Roberts T (eds) Int Congr Pesticide Chemistry, IU-PAC, Blackwell Scientific Publication, London, pp 417–420Google Scholar
  53. Klein W, Scheunert I (1982) Bound pesticide residues in soil, plants and food with particular emphasis on the application of nuclear techniques. In: Agrochemicals: Fate in food and environment. Proc Intern Symp IAEA Vienna, Austria, pp 177–205Google Scholar
  54. Knicker H, Bruns-Nagel D, Drzyzga O, v Löw E, Steinbach K (1999) Characterization of 15N-TNT Residues After an Anaerobic/Aerobic Treatment of Soil/Molasses Mixtures by Solid-State 15N-NMR Spectroscopy. 1. Dertermination and Optimization of Relevant NMR Spectroscopic Parameters. Environ Sci Technol 33: 343–349Google Scholar
  55. Kolb M, Bock C, Harm H (1996) Bioakkumulation und Persistenz organischer Schadstoffe aus Bioabfallkomposten in Pflanzen. In: Neue Techniken der Kompostierung. Stegmann R (ed) Hamburger Berichte Abfallwirtschaft 11. Economica Verlag, Bonn, Germany, pp 345–360Google Scholar
  56. Kovacs MF (1986) Regulatory aspects of bound residues. Residue Reviews 97: 1–17CrossRefGoogle Scholar
  57. Livingston D (1993) Biotechnology and pollution monitoring: use of molecular biomarkers in the aquatic environment. J Chem Technol Biotechnol 57: 195–211CrossRefGoogle Scholar
  58. Martin JP, Haider K (1980) A comparison of the use of phenolase and peroxidase for the synthesis of model humic acid-type polymers. Soil Sci Soc Am J 44: 983–988CrossRefGoogle Scholar
  59. Menzel RE, Nelson JO (1986) Water and soil pollutants. In: Casarett and Dulls Toxicology: The basic science of poisons. Doull JD, Klaassen DD, Amdur MO (eds) Macimillan Pub Co Inc, New York, USA, pp 825–853Google Scholar
  60. Michaelis W, Richnow HH, Seifert R (1995) Chemically bound chlorinated aromatics in humic substances. Naturwissenschaften 82: 139–142CrossRefGoogle Scholar
  61. Mortland MM (1986) Mechanisms of adsorption of nonhumic organic species by clays. In: Interaction of soil minerals with natural organics and microbes. Huang PM, Schnitzer M (eds) SSSA Spec Publ 17: 59–75Google Scholar
  62. Mulder GJ (ed) (1990) Conjugation reaction in drug metabolism — an integrated approach. Substrates, co-substrates, enzymes and their interaction in vivo and in vitro. Taylor and Francis, London, UKGoogle Scholar
  63. Nanny MA, Bortiatynski JM, Tien M, Hatcher PG (1996) Inverstigation of enzymatic alterations of 2,4-dichlorophenol using 13C-nulear magnetic resonance in combination with site specific 13C-labelling: understanding the fate of this pollutant. Environ Tox Chem 15: 1857–1864Google Scholar
  64. Nordlohn L, Eschenbach A, Wienberg R, Mahro B, Kästner M (1995) Versuche in Kleinreaktoren und Batchversuche mit Zudotierung ‘4C-markierter Schadstoffe. Teilprojekt 4, Wissenschaftliches Untersuchungsprogramm “Veringstraße” (Verbundvorhaben): Sanierungsbegleitende Untersuchung zur Stoffbilanz und zur Metabolitenbildung bei der Durchführung eines Weißfäule-Mietenverfahrens zur Reinigung des PAK-kontaminierten Bodens von dem Schadensfall “Veringstraße 2”. Abschlußberichte an die Umweltbehörde der Hansestadt Hamburg, Februar 1995, GermanyGoogle Scholar
  65. Northcott GL, Jones KC (2000) Experimental approaches and analytica techniques for the de- termining organic compound bound residues in soil and sediment. Environ Poll 108: 19–43.CrossRefGoogle Scholar
  66. Park KS, Sims RC, Doucette WJ, Matthews JE (1988) Biological transformation and detoxification of 7,12-dimethyl benz(a)anthracene in soil systems. J Water Poll Control Fed 60: 1822–1825Google Scholar
  67. Pauli FW (1967) Soil Fertility. Adam Hilger, London, UKGoogle Scholar
  68. Pignatello JJ (1989) Sorption dynamic of organic compounds in soils and sediments. In: Reactions and movement of organic chemicals in soils. Sawhney BL, Brown K (eds) SSSA Spec Publ 22: 45–80.Google Scholar
  69. Richnow HH, Annweiler E, Koning M, Lüth J-C, Stegmann R, Garms C, Francke W, Michaelis W (2000) Tracing the transformation of labelled [1–13C]-phenanthrene in a soil bioreactor. Environ Poll 108: 91–101CrossRefGoogle Scholar
  70. Richnow HH, Seifert R, Hefter J, Kästner M, Mahro B, Michaelis W (1994) Metabolites of xenobiotica and mineral oil constituents linked to macromolecular organic matter in polluted environments. Org Geochem 22: 671–681Google Scholar
  71. Richnow HH, Eschenbach A, Hefter J, Kästner M, Mahro B, Seifert R, Michaelis W (1996) Bildungsmechanismen von Bound Residues bei der biologischen Behandlung kontaminierter Böden. In: Biologische und chemische Behandlung von PAK-haltigen Böden und Abwässern. Cuno M (ed) Schriftenreihe Biologische Abwasserreinigung 7, TU-Berlin, Berlin 1996, Germany, pp 81–97Google Scholar
  72. Richnow HH, Eschenbach A, Seifert R, Wehrung P, Albrecht P, Michaelis W (1998) The use of 13C-labelled polycyclic aromatic hydrocarbons for the analysis of their transformation in soils. Chemosphere 36: 2211–2224CrossRefGoogle Scholar
  73. Richnow HH, Seifert R, Hefter J, Link M, Francke W, Schäfer G, Michaelis W (1997) Organic pollutants associated with macromolecular soil organic matter — a mode of binding. Org Geochem 26: 745–758Google Scholar
  74. Richnow HH, Seifert R, Kästner M, Mahro B, Horsfield B, Tiedgen U, Böhm S, Michaelis W (1995) Rapid screening of PAH-residues in bioremediated soils. Chemosphere 31: 3991–3999CrossRefGoogle Scholar
  75. Richnow HH, Eschenbach A, Mahro B, Kästner M, Annweiler E, Seifert R, Michaelis W (1999) The formation of non-extractable soil bound residues — a stable isotope approach. Environ Sci Technol 33: 3761–3767CrossRefGoogle Scholar
  76. Roberts TR (1984) Non-extractable pesticide residues in soil and plants. IUPAC Reports on pesticides (17). Pure Appl Chem 56: 945–956CrossRefGoogle Scholar
  77. Ruggiero P (1998) Abiotic transformations of organic xenobiotic in soils: A compounding factor in the assessment of bioavailability. In: Bioavailability of Organic Xenobiotics in the Environment. Block JC, Baveye Ph, Goncharuk VV (eds) NATO ASI Series 64, Kluwer Academic Publishers, The Netherlands, pp 159–205Google Scholar
  78. Sack U, Fritsche W (1997) Enhancement of pyrene mineralization in soil by wood-decaying fungi. FEMS Microbiol Ecol 22: 77–83CrossRefGoogle Scholar
  79. Sarkar JM, Bollag JM (1987) Inhibitory effect of humic and fulvic acids on oxidoreductases as measured by the coupling of 2,4-dichlorophenol to humic substances. Sci Tot Environ 62: 367–377CrossRefGoogle Scholar
  80. Schnöder F, Mittelstaedt W, Führ F (1994) Das Verhalten von Benzo(a)pyren und Fluoranthen in einer Parabraunerde — Lysimeter und Abbaustudien. In: Biologischer Abbau von polyzyklischen aromatischen Kohlenwasserstoffen. Weigert B (ed) Schriftenreihe Biologische Abwasserreinigung 4, SFB 193, TU-Berlin, Germany, pp 217–230Google Scholar
  81. Shen J, Bartha R (1996) Metabolic efficiency and turnover of soil microbial communities in biodegradation tests. Appl Environ Microbiol 62: 2411–2415Google Scholar
  82. Stevenson F-J (1994) Humus chemistry — genesis, composition reactions. John Wiley and Sons, New York, USAGoogle Scholar
  83. Stott DE, Kassim G, Jarrell WM, Martin JP, Haider K (1983a) Stabilization and incorporation into Biomass of specific plant carbons during biodegradation in soil. Plant and Soil 70: 15–26CrossRefGoogle Scholar
  84. Stott DE, Martin JP, Focht DD, Haider K (1983b) Biodegradation, stabilization in humus, and incorporation into soil biomass of 2,4-D and chlorocatechol carbons. Soil Sci Soc Am J 47: 66–70CrossRefGoogle Scholar
  85. Theng BKG (1982) Clay activated organic reactions. Dev Sedimentol 35: 197–238Google Scholar
  86. Thorn KA, Pettigrew PJ, Goldenberg WS (1996) Covalent binding of aniline to humic sub-stances. 2.15N NMR studies of nucleophilic addition reactions. Environ Sci Technol 30: 2764–2775CrossRefGoogle Scholar
  87. US Federal Register (1975) Registration of pesticides in the United States — Proposed guidelines. Fed Regis 40, USA, p 123Google Scholar
  88. Verstraete W, Devliegher W (1996) Formation of non-bioavailable organic residues in soil: Perspectives for site remediation. Biodegradation 7: 471–485Google Scholar
  89. Wang X, Yu X, Bartha R (1990) Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environ Sci Technol 24: 1086–1089CrossRefGoogle Scholar
  90. Weber EJ, Spidle DL, Thorn KA (1996) Covalent binding of aniline to humic substances. 1. Kinetic studies. Environ Sci Technol 30: 2755–2763Google Scholar
  91. White JL (1976) Clay-pesticide interaction. In: Bound and conjugated pesticide residues. Kauf- mann DD, Still GG, Paulson GD, Bandai SK (eds) ACS Symosiums Series 29: 208–218Google Scholar
  92. Zielke RC, Pinnavaia TJ, Mortland MM (1989) Adsorption reactions of selected organic molecules on clay mineral surfaces. In: Reactions and movement of organic chemicals in soils. Sawhney BL, Brown K (eds) SSSA Spec Pub122, pp 81–97Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • M. Kästner
    • 1
  • H. H. Richnow
    • 1
  1. 1.Department of Remediation ResearchCentre for Environmental Research Leipzig-Halle (UFZ)USA

Personalised recommendations