Bioavailability — the Key Factor of Soil Bioremediation

  • B. Mahro
  • R. Müller
  • V. Kasche
Chapter

Abstract

In the last two decades it has been shown that many pollutant compounds being found in soils or aqueous ecosystems may potentially be transformed by microorganisms. Transformation may be either completely into carbon dioxide and water, or at least into non-toxic metabolites (Klein 2000). These promising research results inspired many remediation companies to set up particular bioremediation approaches for the clean-up of such contaminated areas. The bio-enthusiasm of the early years, however, is now followed by a more realistic and sometimes even sceptical view of bioremediation. The major reason for this turn-around is that it has now become clear that results being obtained in the laboratory with artificially contaminated soils do not necessarily indicate what may happen actually in the field with soil from contaminated sites. With hydrophobic pollutants like PAH (Bossert et al. 1984; Erickson et al. 1993; Schaefer et al. 1995; Weissenfels et al. 1992) or some sorts of mineral oil (Angehrn et al. 1997; Bossert et al. 1984; Riis et al. 1998) in particular, it has been observed that even the degradation of compounds being completely mineralisable in the lab-culture may be incomplete in practical field bioremediation. Considerable residual concentrations of analytically detectable pollutants in the soil are subsequently left behind. An example for such a typical “hockey-stick-kinetic” (a term coined by M. Alexander, see Chapter 14) is shown in fig. 13.1.

Keywords

Sludge Ozone Hydrocarbon Diesel Naphthalene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angehrn D, Gälli R, Schluep M, Zeyer J (1997) Biologisch saniertes Bodenmaterial aus Mineralölschadensfällen: Abfall oder Produkt ? TerraTech 3 /1997: 51–56Google Scholar
  2. Bollag JM (1992) Decontaminating soil with enzymes. Environ Sci Technol 26: 1876–1881CrossRefGoogle Scholar
  3. Boonchan S, Britz ML, Stanley G (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial-cocultures. Appl En-viron Microbiol 66: 1007–1019CrossRefGoogle Scholar
  4. Bosma TNP, Middeldorp PJM, Zehnder AJB (1997) Mass transfer limitation of biotransformation: Quantifying bioavailability. Environ Sci Technol 31: 248–252Google Scholar
  5. Bossert I, Kachel MW, Bartha R (1984) Fate of hydrocarbons during oily sludge disposal in soil. Appl Environ Microbiol 47: 763–767Google Scholar
  6. Cuno M (1996) Kinetische Untersuchungen zum biologischen Abbau von Mineralölen und polycyclischen aromatischen Kohlenwasserstoffen. Fortschr-Ber VDI Series 15 (Umwelttechnik), Nr 148, VDI-Verlag DüsseldorfGoogle Scholar
  7. Deschenes L, Lafrance P, Villeneuve JP, Samson R (1996) Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl Microbiol Biotechnol 46: 638646Google Scholar
  8. Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol 57: 1441–1447Google Scholar
  9. Efroymson RA, Alexander M (1995) Reduced mineralization of low concentrations of phenanthrene because of sequestering in nonaqueous-phase-liquids. Environ Sci Technol 29: 515521Google Scholar
  10. Erickson DC, Loehr RC, Neuhauser EF (1993) PAH loss during bioremediation of manufactured gas plant site soils. Water Res 27: 911–919CrossRefGoogle Scholar
  11. Foght JM, Gutnick DL, Westlake DWS (1989) Effect of emulsan on biodegradation of crude oils by pure and mixed bacterial cultures. Appl Environ Microbiol 55: 36–42Google Scholar
  12. Ghoshal S, Luthy RG (1996) Bioavailability of hydrophobic organic compounds from nonaqueous-phase-liquids: the biodegradation of naphthalene from coal tar. Environ Toxicol Chem 15: 1894–1900CrossRefGoogle Scholar
  13. Harms H (1998) Bioavailability of dioxin-like compounds for microbial degradation. In: Wittich RM (ed) Biodegradation of dioxins and furans. Springer Verlag, Heidelberg, Germany, pp 135–163CrossRefGoogle Scholar
  14. Käppeli O, Walther P, Mueller M, Fiechter A (1984) Structure of the cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol 138: 279–292CrossRefGoogle Scholar
  15. Klein J (2000) Environmental processes II — Soil decontamination. In: Klein J (ed) (Rehm HJ, Reed G, Pühler A, Stadler P, (series eds)) `Biotechnology“ a multi-volume comprehensive treatise, Vol 11 b, Wiley-VCH, Weinheim, GermanyGoogle Scholar
  16. Knackmuss HJ (1997) Abbau von Natur-und Fremdstoffen. In: Ottow JCG, Bidlingmaier W (eds) Umweltbiotechnologie. Gustav Fischer Verlag, Stuttgart, Germany, pp 39–80Google Scholar
  17. Kottermann MJJ, Vis E, Field JA (1998) Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous micro-flora. Appl Environ Microbiol 64: 2853–2858Google Scholar
  18. Laha S, Luthy RG (1991) Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ Sci Technol 25: 1920–1930CrossRefGoogle Scholar
  19. Lenke H, Daun G, Bryniok D, Knackmuss HJ (1993) Biologische Sanierung von Rüstungsaltlasten. Spektrum der Wissenschaft 10 /1993: 106–108Google Scholar
  20. Mahro B (2000) Bioavailability of contaminants. In: Klein J (ed) (Rehm HJ, Reed G, Pühler A, Stadler P (series Eds)) Environmental processes II — Soil decontamination. “Biotechnology” a multi-volume comprehensive treatise, Vol 11 b. Wiley-VCH, Weinheim, Germany, pp 61–88Google Scholar
  21. Mahro B, Kästner M (1993) Der mikrobielle Abbau polyzyklischer aromatischer Kohlenwasser-stoffe (PAK) in Böden und Sedimenten: Mineralisierung Metabolitenbildung und Entstehung gebundener Rückstände. Bioengineering 9: 50–58Google Scholar
  22. Mahro B, Schaefer G (1998) Bioverfügbarkeit als limitierender Faktor des mikrobiellen Abbaus von PAK im Boden-Ursachen des Problems und Lösungsstrategien. Altlastenspektrum 7: 127–134Google Scholar
  23. Mahro B, Schmidt L, Eschenbach A (1999) Möglichkeiten und Grenzen mikrobiologischer Verfahren bei der Sanierung kontaminierter Böden. In: Heiden S, Erb R, Warrrelmann J, Dierstein R (eds) Biotechnologie im Umweltschutz Bioremediation: Entwicklungsstand — Anwendungen — Perspektiven. E Schmidt-Verlag, Berlin, Germany, pp 99–107Google Scholar
  24. Marin M, Pedregosa A, Laborda F (1996) Emulsifier production and microscopical study of emulsions and biofilms formed by the hydrocarbon-utilizing bacteria Acinetobacter calcoaceticus MM5. Appl Microbiol Biotechnol 44: 660–667CrossRefGoogle Scholar
  25. Mueller JG, Lantz SE, Blattman BO, Chapman PJ (199la) Bench-scale evaluation of alternative biological treatment processes for the remediation of pentachlorophenol-and creosote-contaminated materials: solid phase bioremediation. Environ Sci Technol 25: 1045–1055Google Scholar
  26. Müller R (1992) Bacterial degradation of xenobiotics. In: Fry JC, Gadd GM, Herbert RA, Jones CW, Watson-Craik IA (eds) Microbial control of pollution, SGM Symposium Vol 48. Cambridge University Press, UK, pp 35–57Google Scholar
  27. Rus V, Miethe D, Babel W (1998) Grenzen der Sanierbarkeit von Mineralölschäden. Altlastenspektrum 7: 214–218Google Scholar
  28. Rus V, Miethe D, Möder M (1996) Analytical characterization of the persistent residues after the microbial degradation of mineral oils. Fresenius J Anal Chem 356: 378–384CrossRefGoogle Scholar
  29. Rosenberg M, Beyer EA, Delarea J, Rosenberg E (1982) Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44: 929–937Google Scholar
  30. Schaefer G, Hattwig S, Unterste-Wilms M, Hupe K, Heerenklage J, Lüth JC, Kästner M, Eschenbach A, Stegmann R, Mahro B (1995) PAH-degradation in soil: microbial activation or inoculation A comparative evaluation with different supplements and soil materials. In: van den Brink WJ, Bosman R, Arendt F (eds) Contaminated soil“95. Kluwer Academic Publ, The Netherlands, pp 415–416CrossRefGoogle Scholar
  31. Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshaawsky D (1996) Degradation of pyrene benz(a)anthracene and benzo[a]pyrene by Mycobacterium sp strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62: 13–19Google Scholar
  32. Scott CCL, Finnerty WR (1976) A comparative analysis of the ultrastructure of hydrocarbon-oxidizing microorganisms. J Gen Microbiol 94: 342–350Google Scholar
  33. Stucki G, Alexander M (1987) Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl Environ Microbiol 53: 292–297Google Scholar
  34. Thibault SL, Anderson M, Frankenberger WT (1996) Influence of surfactants on pyrene desorption and degradation in soils. Appl Environ Microbiol 62: 283–287Google Scholar
  35. Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60: 258–263Google Scholar
  36. Tiehm A, Stieber M, Werner P, Frimmel FH (1997) Surfactant enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ Sci Technol 31: 2570–2576CrossRefGoogle Scholar
  37. Weissenfels WD, Klewer HJ, Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36: 689–696CrossRefGoogle Scholar
  38. Wodzinski RS, Larocca D (1977) Bacterial growth kinetics on diphenylmethane and naphthalene-heptamethylnonane mixtures. Appl Environ Microbiol 33: 660–665Google Scholar
  39. Ye D, Siddiqi MA, Maccubin AE, Kumar S, Sikka H (1996) Degradation of polynuclear aroma-tic hydrocarbons by Sphingomonas paucimobilis. Environ Sci Technol 30: 136–142CrossRefGoogle Scholar
  40. Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol 61: 2247–2251Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • B. Mahro
    • 1
  • R. Müller
    • 2
  • V. Kasche
    • 2
  1. 1.Neustadtwall 30Institute for Environmental TechnologyBremenGermany
  2. 2.Section Biotechnology IITechnical University Hamburg-HarburgHamburgGermany

Personalised recommendations