What Do We Know about Antibiotics in the Environment?

  • T. Kümpel
  • R. Alexy
  • K. Kümmerer


Antibiotics are extensively used in human and veterinary medicine as well as in aquaculture to prevent or to treat microbial infections and in livestock production to promote the growth of animals. As biocidal substances are designed with the aim of causing a biological effect, they may affect water and soil dwelling organisms when reaching the environment. However, little is known on the occurrence and fate of antibiotics in the environment and their impact on the ecosystem.


Antibacterial Agent Sewage Treatment Plant Sewage System Oxolinic Acid Algal Toxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Ahmad A, Daschner FD, Kümmerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G and sulfamethoxazole and inhibition of waste water bacteria. Arch Environ Contam Toxicol 37: 158–163CrossRefGoogle Scholar
  2. Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211: 132–211CrossRefGoogle Scholar
  3. Backhaus T, Grimme LH (1999) The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri. Chemosphere 38: 3291–3301CrossRefGoogle Scholar
  4. Baguer AJ, Jensen J, Krogh PH (2000) Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere 40: 751–757CrossRefGoogle Scholar
  5. Björklund H, Rabergh CMI, Bylund G (1991) Residues of oxytetracycline in wild fish and sediments from fish farms. Aquaculture 86: 359–367CrossRefGoogle Scholar
  6. Brambilla G, Civitareale C, Migliore L (1994) Experimental toxicity and analysis of bacitracin, flumequine and sulphadimethoxine in terrestrial and aquatic organisms as a predictive model for ecosystem damage. Quimica Analitica 13: 573–577Google Scholar
  7. Canton JH, Esch GJ van (1976) The short-term toxicity of some feed additives to different freshwater organisms. Bull Environ Contam Toxicol 15720–725Google Scholar
  8. Capone DG, Weston DP, Miller V, Shoemaker C (1996) Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145: 55–75CrossRefGoogle Scholar
  9. Cerovec C (2000) Entwicklung and Anwendung von HPLC Methoden für die Analyse von Antibiotika in verschiedenen Testsystemen. Diplomarbeit, Fachhochschule and Berufskollegs NTA, Isny im AllgäuGoogle Scholar
  10. Colinas C, Ingham E, Molina R (1994) Population responses of target and non-target forest soil organisms to selected biocides. Soil Biol Biochem 26: 41–47CrossRefGoogle Scholar
  11. Coyne R, Hiney M, O’Conner B, Cazabon D, Smith P (1994) Concentration and persistence of oxytetracycline in sediments under a marine salmon farm. Aquaculture 123: 31–42CrossRefGoogle Scholar
  12. Dojmi di Delupis G, Macrì A, Civitareale C, Migliore L (1992) Antibiotics of zootechnical use: effects of acute high and low dose contamination on Daphnia magna Straus. Aquatic Toxicol 22: 53–60CrossRefGoogle Scholar
  13. Donoho AL (1984) Biochemical studies on the fate of monensin in animals and in the environment. J Anim Sci 58: 1528–1539Google Scholar
  14. Froehner K, Backhaus T, Grimme LH (2000) Bioassays with Vibrio fischeri for the assessment of delayed toxicity. Chemosphere 40: 821–828CrossRefGoogle Scholar
  15. Gavalchin J, Katz SE (1994) The persistence of fecal-borne antibiotics in soil. J AOAC Intern 77:481–485 Gilbertson TJ, Hornish RE, Jaglan PS, Koshy KT, Nappier JL, Stahl GL, Cazers AR, Napplier JM, KubicekGoogle Scholar
  16. MF, Hoffman GA, Hamlow PJ (1990) Environmental fate of ceftiofur sodium, a cephalosporin antibiotic. Role of animal excreta in its decomposition. J Agric Food Chem 38: 890–894Google Scholar
  17. Gomez J, Mendez R, Lema JM (1996) The effect of antibiotics on nitrification processes. Appl Biochem Biotechnol 57 /58: 869–876CrossRefGoogle Scholar
  18. Halling-Sørensen B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40: 731–739CrossRefGoogle Scholar
  19. Hamscher G, Sczesny S, Abu-Qare A, Höper H, Nau H (2000) Stoffe mit pharmakologischer Wirkung einschließlich hormonell aktiver Substanzen in der Umwelt: Nachweis von Tetracyclinen in güllegedüngten Böden. Dtsch tierärztl Wschr 10: 293–348Google Scholar
  20. Hansen PK, Lunestad BT, Samuelsen OB (1992) Effects of oxytetracycline, oxolinic acid and flumequine on bacteria in an artificial marine fish farm sediment. Can J Microbiol 38: 1307–1312CrossRefGoogle Scholar
  21. Hartmann A, Alder AC, Koller T, Widmer RM (1998) Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environ Toxicol Chem 17: 377–382Google Scholar
  22. Hartmann A, Golet EM, Gartiser S, Alder AC, Koller T, Widmer RM (1999) Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital wastewaters. Arch Environ Contam Toxicol 36: 115–119CrossRefGoogle Scholar
  23. Hektoen H, Berge JA, Hormazabal V, Yndestad M (1995) Persistence of antibacterial agents in marine sediments. Aquaculutre 133: 175–184CrossRefGoogle Scholar
  24. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225: 109–118CrossRefGoogle Scholar
  25. Holm JV, Rugge K, Bjerg PL, Christensen TH (1995) Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill. Envrion Sci Tech 29: 1415–1420CrossRefGoogle Scholar
  26. Holten Liitzhoft HC, Halling-Sorensen B, Jorgensen SE (1999) Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contam Toxicol 36: 1–6CrossRefGoogle Scholar
  27. Hossian AKM, Alexander M (1984) Enhancing soybean rhizosphere colonization by Rhizobium japonicum. Appl Environ Microbiol 48: 468–472Google Scholar
  28. Jacobsen P, Berglind L (1988) Persistence of oxytetracyline in sediment from fish farms. Aquaculture 70: 365–370CrossRefGoogle Scholar
  29. Klaver AL, Matthews RA (1994) Effects of oxytetracycline on nitrification in a model aquatic system. Aquaculture 123: 237–247CrossRefGoogle Scholar
  30. Koller G, Hungerbühler K, Fent K (2000) Data ranges in aquatic toxicity of chemicals. Consequences for environmental risk analysis. Environ Sci Pollut Res 7: 135–143Google Scholar
  31. Kämmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40: 701–710CrossRefGoogle Scholar
  32. Lanzky PF, Halling-Sorensen B (1997) The toxic effect of the antibiotic metronidazol on aquatic organisms. Chemosphere 35: 2553–2561CrossRefGoogle Scholar
  33. Lunestad BT (1992) Fate and effects of antibacterial agents in aquatic environments. Chemotherapy in Aquaculture: From theory to reality. Office Internat. des Epizooties, Paris, pp 152–161Google Scholar
  34. Lunestad BT, Goksoyr J (199o) Reduction in the antibacterial effect of oxytetracycline in sea water by complex formation with magnesium and calcium. Diseases of Aquatic Organisms 9: 67–72Google Scholar
  35. Lunestad BT, Samuelsen OB, Fjelde S, Ervik A (1995) Photostability of eight antibacterial agents in seawater. Aquaculture 134: 217–225CrossRefGoogle Scholar
  36. Macrì A, Stazi AV, Dojmi di Delupis G (1988) Acute toxicity of furazolidone on Artemia saliva, Daphnia magna, and Culex pipiens molestus larvae. Ecotoxicology and Environmental Safety 16: 90–94CrossRefGoogle Scholar
  37. Marengo JR, O’Brian RA, Velagaleti RR, Stamm JM (1997) Aerobic biodegradation of (1 C)-sarafloxacin hydrochloride in soil. Environ Toxicol Chem 16: 462–471Google Scholar
  38. Marking LL, Howe GE, Crowther JR (1988) Toxicity of erythromycin, oxytetracycline and tetracycline administered to lake trout in water baths, by injection, or by feeding. The Progressive Fish Culturist 50: 197–201CrossRefGoogle Scholar
  39. Migliore L, Brambilla G, Grassitellis A, Dojmi di Delupis G (1993) Toxicity and bioaccumulation of sulphadimethoxine in Artemia ( Crustacea, Anostraca). Int J Salt Lake Res 2: 141–152Google Scholar
  40. Migliore L, Lorenzi C, Civitareale C, Laudi O, Brambilla G (1995) La flumequina e gli ecosystemi marini: emissione con l’acquacoltura e tossicita su Artemia saliva ( L. ). Atti S.I.T.E. 16Google Scholar
  41. Migliore L, Civitareale C, Brambilla G, Dojmi di Delupis G (1997) Toxicity of several important agricultural antibiotics to Artemia. Wat Res 31: 1801–1806CrossRefGoogle Scholar
  42. Nygaard K, Lunestad BT, Hektoen H, Berge JA, Hormazabal V (1992) Resistance to oxytetracycline, oxolinic acid and furazolidone in bacteria from marine sediments. Aquaculture 104: 21–36CrossRefGoogle Scholar
  43. Oka H, Ikai Y, Kawamura N,Yamada M, Harada K, Ito S, Suzuki M (1989) Photodecomposition products of tetracycline in aqueous solution. J Agric Food Chem 37: 226–231CrossRefGoogle Scholar
  44. Patten DK, Wolf DC, Kunkle WE, Douglass LW (1980) Effect of antibiotics in beef cattle faeces on nitrogen and carbon mineralization in soil and on plant growth and composition. J Environ Qual 9: 167–172CrossRefGoogle Scholar
  45. Pearson M, Inglis V (1993) A sensitive microbioassay for the detection of antibacterial agents in the aquatic environment. J Fish Diseases 16: 255–260CrossRefGoogle Scholar
  46. Plate P (1991) Bodenlose Folgen? Antibiotika in Gülle and Boden. Veto 27: 15–17Google Scholar
  47. Pouliquen H, Le Bris H, Pinault L (1992) Experimental study of the therapeutic application of oxytetracycline, its attenuation in sediment and sea water, and implication for farm culture of benthic organisms. Mar Ecol Progr Ser 89: 93–98CrossRefGoogle Scholar
  48. Qiting J, Xiheng Z (1988) Combination process of anaerobic digestion and ozonization technology for treating wastewater from antibiotics production. Wat Treat 3: 285–291Google Scholar
  49. Rabolle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40: 715–722CrossRefGoogle Scholar
  50. Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the environment. J Pharm Pharmacol 37a - 12Google Scholar
  51. Samuelsen OB (1989) Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm. Aquaculture 83: 7–16CrossRefGoogle Scholar
  52. Samuelsen OB, Solheim E, Lunestad BT (1991) Fate and microbiological effects of furazolidone in a marine aquaculture sediment. Sci Total Environ 108: 275–283CrossRefGoogle Scholar
  53. Samuelsen OB, Torsvik V, Ervik A (1992) Long-range changes in oxytetracycline concentration and bacterial resistance towards oxytetracycline in fish farm sediment after medication. Sci Total Environ 114: 25–36CrossRefGoogle Scholar
  54. Samuelsen OB, Lunestad BT, Fjelde S (1994) Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. Aquaculture 126: 183–290CrossRefGoogle Scholar
  55. Stanislawska J (1979) Communities of organisms during treatment of sewage containing antibiotics. Pol Arch Hydrobiol 26: 221–229Google Scholar
  56. Ternes T (1998) Occurrence of drugs in German sewage treatment plants and rivers. Wat Res 32: 3245–3260CrossRefGoogle Scholar
  57. Thomulka KW, McGee DJ (1993) Detection of biohazardous materials in water by measuring bioluminescence reduction with the marine organism Vibrio harveyi. Environ Sci Health A28 (9): 2153–2166Google Scholar
  58. Tomlinson TG, Boon AG, Trotman CNA (1966) Inhibition of nitrification in the activated sludge process of sewage disposal. J Appl Bact 29: 266–291CrossRefGoogle Scholar
  59. Watts CD, Crathorne M, Fielding M, Steel CP (1983): Identification of non-volatile organics in water using field desorption mass spectrometry and high performance liquid chromatography. In: Angeletti G, Bjorseth A (eds) Analysis of organic micropollutants in water. Reidel Publ. Corp., Dordrecht, pp 120–131Google Scholar
  60. Weerasinghe CA, Towner D (1997) Aerobic biodegradation of virginiamycin in soil. Environ Toxicol Chem 16: 1873–1876CrossRefGoogle Scholar
  61. Wiethan J, Henninger A, Kümmerer K (1999) Antibiotikaresistenz - Vorkommen and Übertragung in Abwasser, Oberflächenwasser and Trinkwasser. Teil 2. Resistenzausbildung and Verbreitung durch Antibiotikaeintrag in Abwasser and Kläranalgen. Untersuchung mittels Chemotaxonomie and Kläranlagensimulation. 2. Zwischenbericht BMBF ProjektGoogle Scholar
  62. Wiethan J, Al-Ahmad A, Henninger A, Kümmerer K (2000) Simulation des Selektionsdrucks der Antibiotika Ciprofloxacin and Ceftazidim in Oberflächengewässern mittels klassischer Methoden. Vom Wasser 95: 107–118Google Scholar
  63. Wollenberger L, Halling-Sorensen B, Kusk KO (z000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40: 723–730Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • T. Kümpel
  • R. Alexy
  • K. Kümmerer

There are no affiliations available

Personalised recommendations