Skip to main content

Constant Directivity Beamforming

  • Chapter

Part of the book series: Digital Signal Processing ((DIGSIGNAL))

Abstract

Beamforming, or spatial filtering, is one of the simplest methods for discriminating between different signals based on the physical location of the sources. Because speech is a very wideband signal, covering some four octaves, traditional narrowband beamforming techniques are inappropriate for hands-free speech acquisition. One class of broadband beamformers, called constant directivity beam-formers, aim to produce a constant spatial response over a broad frequency range. In this chapter we review such beamformers, and discuss implementation issues related to their use in microphone arrays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.D. Van Veen and K.M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE ASSP Mag., vol. 5, no. 2, pp. 4–24, Apr. 1988.

    Article  Google Scholar 

  2. T.D. Abhayapala, R.A. Kennedy, and R.C. Williamson, “Nearfield broadband array design using a radially invariant modal expansion,” J. Acoust. Soc. Amer., vol. 107, no. 1, pp. 392–403, Jan. 2000.

    Article  Google Scholar 

  3. J.L. Flanagan, D.A. Berkeley, G.W. Elko, J.E. West, and M.M. Sondhi, “Autodirective microphone systems,” Acustica, vol. 73, pp. 58–71, 1991.

    Google Scholar 

  4. W. Kellermann, “A self-steering digital microphone array,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP-91), 1991, vol. 5, pp. 3581–3584.

    Google Scholar 

  5. F. Khalil, J.P. Jullien, and A. Gilloire, “Microphone array for sound pickup in teleconference systems,” J. Audio Eng. Soc., vol. 42, no. 9, pp. 691–700, Sept. 1994.

    Google Scholar 

  6. J. Lardies, “Acoustic ring array with constant beamwidth over a very wide frequency range,” Acoust. Letters, vol. 13, no. 5, pp. 77–81, 1989.

    Google Scholar 

  7. R. Smith, “Constant beamwidth receiving arrays for broad band sonar systems,” Acustica, vol. 23, pp. 21–26, 1970.

    Google Scholar 

  8. M.M. Goodwin and G.W. Elko, “Constant beamwidth beamforming,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP-93), 1993, vol. 1, pp. 169–172.

    Google Scholar 

  9. J.H. Doles III and F.D. Benedict, “Broad-band array design using the asymptotic theory of unequally spaced arrays,” IEEE Trans. Antennas Propagat., vol. 36, no. 1, pp. 27–33, Jan. 1988.

    Article  Google Scholar 

  10. A. Ishimaru, “Theory of unequally-spaced arrays,” IRE Trans. Antennas Propagat., vol. AP-10, pp. 691–702, Nov. 1962.

    Google Scholar 

  11. A. Ishimaru and Y.S. Chen, “Thinning and broadbanding antenna arrays by unequal spacings,” IEEE Trans. Antennas Propagat., vol. AP-13, pp. 34–42, Jan. 1965.

    Google Scholar 

  12. T. Chou, “Frequency-independent beamformer with low response error,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP-95), Detroit, USA, May 1995, pp. 2995–2998.

    Google Scholar 

  13. S. Haykin and J. Kesler, “Relation between the radiation pattern of an array and the two-dimensional discrete Fourier transform,” IEEE Trans. Antennas Propagat., vol. AP-23, no. 3, pp. 419–420, May 1975.

    Google Scholar 

  14. J.S. Marciano Jr. and T.B. Vu, “Reduced complexity beam space broadband frequency invariant beamforming,” Electronics Letters, vol. 36, no. 7, pp. 682683; Mar. 2000.

    Google Scholar 

  15. D.B. Ward, R.A. Kennedy, and R.C. Williamson, “Theory and design of broadband sensor arrays with frequency invariant far-field beam patterns,” J. Acoust. Soc. Amer., vol. 97, no. 2, pp. 1023–1034, Feb. 1995.

    Article  MathSciNet  Google Scholar 

  16. D.B. Ward, R.A. Kennedy, and R.C. Williamson, “FIR filter design for frequency-invariant beamformers,” IEEE Signal Processing Lett., vol. 3, no. 3, pp. 69–71, Mar. 1996.

    Article  Google Scholar 

  17. C. Winter, “Using continuous apertures discretely,” IEEE Trans. Antennas Propagat., vol. AP-25, pp. 695–700, Sept. 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ward, D.B., Kennedy, R.A., Williamson, R.C. (2001). Constant Directivity Beamforming. In: Brandstein, M., Ward, D. (eds) Microphone Arrays. Digital Signal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04619-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04619-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07547-6

  • Online ISBN: 978-3-662-04619-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics