Randomized Algorithms

  • Juraj Hromkovič
Part of the Texts in Theoretical Computer Science An EATCS Series book series (TTCS)

Abstract

A randomized algorithm can be viewed as a nondeterministic algorithm that has a probability distribution for every nondeterministic choice. To simplify the matter one usually considers only the random choices from two possibilities, each with the probability 1/2. Another possibility is to consider a randomized algorithm as a deterministic algorithm with an additional input that consists of a sequence of random bits. In other words, a randomized algorithm may be seen as a set of deterministic algorithms, from which one algorithm is randomly chosen for the given input.

Keywords

Assure Stein Prefix Fermat Suffix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Remarks

  1. [MU49]
    Metropolis, I. N., Ulam, S.: The Monte Carlo method. Journal of the Amer-ican Statistical Assosiation 44, no. 247 (1949), 335–341.MathSciNetMATHCrossRefGoogle Scholar
  2. [Bab79]
    Babai, L.: Monte Carlo algorithms in graph isomorphism techniques. In: Research Report no. 79–10, Département de mathématiques et de statistique, Université de Montréal, Montréal, 1979.Google Scholar
  3. [MR95]
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, 1995.Google Scholar
  4. [Kar91]
    Karp, R.: An introduction to randomized algorithms Discrete Applied Mathematics 34 (1991), 165–201.MathSciNetMATHCrossRefGoogle Scholar
  5. [BB96]
    Brassard, G., Bratley, P.: Fundamentals of Algorithmics. Prentice-Hall, En-glewood Cliffs, 1996.Google Scholar
  6. [ACG+99]
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation (Combinatorial Optimization Problems and Their Approximability Properties), Springer-Verlag 1999.Google Scholar
  7. [MPS98]
    Mayr, E. W., Prömel, H. J., Steger, A. (Eds.): Lecture on Proof Verification and Approximation Algorithms. Lecture Notes in Computer Science 1967, Springer-Verlag, 1998.Google Scholar
  8. [BS96]
    Bach, E., Shallit, J.: Algorithmic Number Theory, Vol. 1, MIT Press, 1996.Google Scholar
  9. [AMM77]
    Adleman L., Manders, K., Miller, G. L.: On taking roots in finite fields. In: Proc. 18th IEEE FOCS, IEEE, 1977, pp. 151–163.Google Scholar
  10. [Pra75]
    Pratt, V.: Every prime has a succint certificate. SIAM Journal on Com-puting 4, no. 3 (1975), 214–220.MathSciNetMATHCrossRefGoogle Scholar
  11. [Mi176]
    Miller, G.: Riemann’s hypothesis and tests for primality. Journal of Com-puter and System Sciences 13 (1976), 300–317.MATHCrossRefGoogle Scholar
  12. [Car12]
    Carmichael, R.: On composite numbers p which satisfy the Fermat congru-ence 0 -1 w p. American Mathematical Monthly 19 (1912), 22–27.CrossRefGoogle Scholar
  13. [AGP92]
    Alford, W. R., Granville, A., Pomerance, C.: There are infinitely many Carmichael numbers. University of Georgia Mathematics Preprint Series, 1992.Google Scholar
  14. [SS77]
    Solovay, R., Strassen, V.: A fast Monte Carlo test for primality. SIAM Journal on Computing 6, no. 1 (1977), 84–85; erratum, ibid. 7, no. 1 (1978), 118.MathSciNetGoogle Scholar
  15. [Str96]
    Strassen, V.: Zufalls-Primzahlen und Kryptographie. In: Highlights aus der Informatik ( I. Wegener, Ed. ), Springer-Verlag, 1996, pp. 253–266 (in German).CrossRefGoogle Scholar
  16. [Rab76]
    Rabin, M. O.: Probabilistic algorithms. In: Algorithms and Complexity: Recent Results and New Directions. (J. F. Traub, Ed. ), Academic Press, 1976, pp. 21–39.Google Scholar
  17. [Rab80]
    Rabin, M. O.: Probabilistic algorithm for primality testing. Journal of Number Theory 12 (1980), 128–138.MathSciNetMATHCrossRefGoogle Scholar
  18. [AH87]
    Adleman, L., Huang, M.: Recognizing primes in random polynomial time. In: Proc. 19th ACM STOC, ACM, 1987, pp. 482–469.Google Scholar
  19. [BS96]
    Bach, E., Shallit, J.: Algorithmic Number Theory, Vol. 1, MIT Press, 1996.Google Scholar
  20. [NI92]
    Nagamochi, H., Ibarski, T.: Computing edge connectivity in multigraphs and capacitated graphs. SIAM Journal on Discrete Mathematics 5 (1992), 54–66.MathSciNetMATHCrossRefGoogle Scholar
  21. [KS93]
    algorithm for minimum cuts. In: Proc. ACM STOC, ACM, 1993, pp. 757–765.Google Scholar
  22. [Joh74]
    Johnson, D. S.: Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9 (1974), 256–289.MathSciNetMATHCrossRefGoogle Scholar
  23. [GW94a]
    Goemans, M., Williamson, D.:.878-Approximation algorithms for MAX CUT and MAX 2SAT. In: Proc 26th ACM STOC,ACM, 1994, pp. 422431.Google Scholar
  24. [MPS98]
    Mayr, E. W., Prömel, H. J., Steger, A. (Eds.): Lecture on Proof Verification and Approximation Algorithms. Lecture Notes in Computer Science 1967, Springer-Verlag, 1998.Google Scholar
  25. [Vaz86]
    Vazirani, U. V.: Randomness, adversaries, and computation. Doctoral dissertion, Deptartment of Computer Science, University of California, Berkeley, 1986.Google Scholar
  26. [Vaz87]
    Vazirani, U. V.: Efficiency considerations in using semi-random sources. In: Proc. 19th ACM STOC, ACM, 1987, pp. 160–168.Google Scholar
  27. [Sie98]
    Siegling, D.: Derandomization. In: [MPS98], pp. 41–61.Google Scholar
  28. [ABI86]
    Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. Journal of Algorithms 7 (1986), 567–583.MathSciNetMATHCrossRefGoogle Scholar
  29. [Rag88]
    Raghavan, P.: Probabilistic construction of deterministic algorithms: Approximating packing integer programs. Journal of Computer and System Sciences 37 (1988), 130–143.MathSciNetMATHCrossRefGoogle Scholar
  30. [Spe94]
    Spencer, J.: Randomization, derandomization and antirandomization: three games. Theoretical Computer Science 131 (1994), 415–429.MathSciNetMATHCrossRefGoogle Scholar
  31. [Gi177]
    Gill, J.: Computational complexity of probabilistic Turing machines SIAM Journal on Computing 6 (1977), 675–695.MathSciNetMATHCrossRefGoogle Scholar
  32. [MS97]
    Macarie, I. I., Seiferas, J. I.: Strong equivalence of nondeterministic and randomized space-bounded computations. Manuscript, 1997.Google Scholar
  33. [Coo71]
    Cook, S. A.: The complexity of theorem proving procedures. In: Proc. 3rd ACM STOC, ACM, 1971, pp. 151–158.Google Scholar
  34. [Fre77]
    Freivalds, R.: Probabilistic machines can use less running time. In: Infor-mation Processing 1977, IFIP, North-Holland, 1977, pp. 839–842.Google Scholar
  35. [MS82]
    Mehlhorn, K., Schmidt, E.: Las Vegas is better than determinism in VLSI and ditributed computing. In: Proc 14th ACM STOC, ACM, 1982, pp. 330–337.Google Scholar
  36. [JPS84]
    Jâjâ, J., Prassanna Kumar, V.K., Simon, J.: Information transfer under different sets of protocols. SIAM Journal of Computing 13 (1984), 840849.Google Scholar
  37. [DHI00]
    Duris, P., Hromkovic, J., Inoue, K.: A separation of determinism, Las Vegas and nondeterminism for picture recognition. In: Proc. IEEE Conference on Computation Complexity, IEEE, 2000, pp. 214–228.Google Scholar
  38. [Fre77]
    Freivalds, R.: Probabilistic machines can use less running time. In: Infor-mation Processing 1977, IFIP, North-Holland, 1977, pp. 839–842.Google Scholar
  39. [Sau97]
    Sauerhoff, M.: On nondeterminism versus randomness for read-once branching programs. Electronic Colloquium on Computational Complexity TR 97–030 (1997).Google Scholar
  40. [HrS99]
    Hromkovic, J., Schnitger, G.: On the power of Las Vegas II: Two-way finite automata. In: Proc. ICALP ‘89, Lecture Notes in Computer Science 1644, Springer-Verlag, 1999, pp. 433–442 (full version—to appear in Theoretical Computer Science).Google Scholar
  41. [DKR94]
    Dietzfelbinger, M., Kutylowski, M., Reischuk, R.: Exact lower bounds for computing Boolean functions on CREW PRAMs. Journal of Computer and System Sciences 48 (1994), pp. 231–254.MathSciNetMATHCrossRefGoogle Scholar
  42. [HrSa00]
    Hromkovic, J., Sauerhoff, M.: Tradeoffs between nondeterminism and complexity for communication protocols and branching programs. In Proc. STACS ‘2000, Lecture Notes in Computer Science 1770, Springer-Verlag 2000, pp. 145–156.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Juraj Hromkovič
    • 1
  1. 1.Computer Science I, Algorithms and ComplexityRWTH AachenAachenGermany

Personalised recommendations