Intracellular Single Chain Antibodies — Methods for Derivation and Employment

  • Guadalupe Bilbao
  • Juan Luis Contreras
  • David T. Curiel
Part of the Springer Lab Manuals book series (SLM)


The delineation of the molecular basis of cancer in general, allows for the possibility of specific intervention at the molecular level for therapeutic purposes. To this end, three main approaches have been developed: mutation compensation, molecular chemotherapy and genetic immunopotentiation. The strategy of mutation compensation aims at correcting the specific genetic defects in cancer cells. Such correction is accomplished by either ablation of oncogenic products, replacement of cellular tumor suppressor genes, or interference with dysregulated signal transduction pathways. A second strategy is molecular chemotherapy, which aims at increasing the specificity of drug delivery or to increase tolerance to standard chemotherapeutic regimens. A third strategy, genetic immunotherapy, aims at augmenting the specificity and/or the magnitude of the normal immune response to tumors. For each of these conceptual approaches, human clinical protocols have entered Phase I clinical trials to assess dose escalation, safety, and toxicity issues.


Light Chain Assembly Reaction Periplasmic Extract Intracellular Antibody QIAquick Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krol, A.V., Stuitje, A.R. (1988) Modulation of eukaryotic gene expression by complement RNA or DNA sequences. Biotechniques. 6, 958–976.PubMedGoogle Scholar
  2. 2.
    Helene, C., Toulme, J-J. (1990) Specific regulation of gene expression by antisense, sense, and antigene nucleic acids. Biochemica and Biophysica, 1049, 99–125.CrossRefGoogle Scholar
  3. 3.
    Gibson, I. (1996) Antisense approaches to the gene therapy of cancer. Cancer Metastasis Rev., 15, 287–299.PubMedCrossRefGoogle Scholar
  4. 4.
    Milligan, J. F., R. J. Jones, B. C. Froehler, and M. D. Matteucci. 1994. Development of antisense therapeutics. Implications for cancer gene therapy. Ann. N. Y. Acad. Sci. 716:228–241.CrossRefGoogle Scholar
  5. 5.
    Stein, C.A., Cheng, Y-C. (1993) Antisense oligonucleotides as therapeutic agents — Is the bullet really magic? Science, 261, 1004–1012.CrossRefGoogle Scholar
  6. 6.
    Stein, C. A. (1995) Does antisense exist? Nat. Med., 1, 1119–1121.CrossRefGoogle Scholar
  7. 7.
    Theuer, C.P., Pastan I. (1993) Immunotoxins and recombinant toxins in the treatment of solid carcinomas. Amer. J. Surg., 166, 284–288.PubMedCrossRefGoogle Scholar
  8. 8.
    Brinkmann, U., Pai, L.H., Fitzgerald, D.J. (1991) B3-(Fv)-PE38KDEL, a single chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc. Natl. Acad. Sci. USA, 88, 8616–8620.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoogenboom, H. R., Marks, J. D., Griffiths, A. D., Winter, G. (1992) Building antibodies from their genes. Immunol. Rev., 130, 41–68.PubMedCrossRefGoogle Scholar
  10. 10.
    Jost, C. R., Kurucz, I., Jacobus, C. M., Titus, J. A., George, A. J., Segal, D. M. (1994) Mammalian expression and secretion of functional single-chain Fv molecules. J. Biol. Chem., 269, 26267–26273.PubMedGoogle Scholar
  11. 11.
    Richardson, J. H., Marasco, W. A. (1995) Intracellular antibodies: development and therapeutic potential. Trends. Biotech., 13, 306–310.CrossRefGoogle Scholar
  12. 12.
    Chen, S. Y., Bagley, J., Marasco, W. A. (1994) Intracellular antibodies as a new class of therapeutic molecules for gene therapy. Hum. Gene Ther., 5, 595–601.PubMedCrossRefGoogle Scholar
  13. 13.
    Colcher, D., Bird, R., Roselli, M. (1990) In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J. Natl. Can. Inst., 82, 1191–1197.CrossRefGoogle Scholar
  14. 14.
    Wawrzynczak, E.J. (1992) Rational design of immunotoxins: current progress and future prospects. Anti-Cancer Drug Design, 7, 427–441.PubMedGoogle Scholar
  15. 15.
    Mykebust, A.T., Godal, A., Fodstad, O. (1994) Targeted therapy with immunotoxins in a nude rat model for leptomenineal growth of human small cell cancer. Can. Res. 54, 2146–2150.Google Scholar
  16. 16.
    Marasco, W.A., Haseltine, W.A., Chen, S-Y. (1993) Design, intracellular expression, and activity of human anti-human immunodeficiency virus type 1 gp 120 singlechain antibody. Proc. Natl. Acad. Sci. USA, 90, 7889–7893.PubMedCrossRefGoogle Scholar
  17. 17.
    Friedman, P.N., Chance, D.F., Trail, P.A. (1993) Antitumor activity of the singlechain immunotoxin BR96 sFv-PE40 against established breast and lung tumor xenografts. T. Immunol., 150. 3054–3061.Google Scholar
  18. 18.
    Werge, T.M., Biocca, S., Cattaneo, A. (1990) Cloning andintracellular expression of a monoclonal antibody to the p2lras protein. FEBS Lett., 274, 193–198.PubMedCrossRefGoogle Scholar
  19. 19.
    Deshane, J., Loechel, F., Conry, R. M., Siegal, G. P., King, C. R., Curiel, D. T. (1994) Intracellular single-chain antibody directed against erbB2 down-regulates cell surface erbB2 and exhibits a selective anti-proliferative effect in erbB2 overexpressing cancer cell lines. Gen. Ther..1.1332–337.Google Scholar
  20. 20.
    Deshane, J., G. P. Siegal, R. D. Alvarez, M. H. Wang, M. Feng, G. Cabrera, T. Liu, M. Kay, and D. T. Curiel. 1995. Targeted tumor killing via an intracellular antibody against erbB-2. Journal. of. Clinical. Investigation. 96:2980–2989.PubMedCrossRefGoogle Scholar
  21. 21.
    Deshane, J., J. Grim, S. Loechel, G. P. Siegal, R. D. Alvarez, and D. T. Curiel. 1996. Intracellular antibody against erbB-2 mediates targeted tumor cell eradication by apoptosis. Cancer Gene Therapy. 3:89–98.PubMedGoogle Scholar
  22. 22.
    Grim, J., J. Deshane, M. Feng, A. Lieber, M. Kay, and D. T. Curiel. 1996. erbB-2 knockout employing an intracellular single-chain antibody (sFv) accomplishes specific toxicity in erbB-2-expressing lung cancer cells. American. Journal. of. Respiratory. Cell &. Molecular. Biology. 15:348–354.CrossRefGoogle Scholar
  23. 23.
    Barnes, D. M., J. Deshane, G. P. Siegal, R. D. Alvarez, and D. T. Curiel. 1996. Novel gene therapy strategy to accomplish growth factor modualtion induces enhanced tumor cell chemosensitivity. Clinical Cancer Research 2:1089–1095.PubMedGoogle Scholar
  24. 24.
    Wright, M., J. Grim, M. Kim, T. V. Strong, G. P. Siegal, and D. T. Curiel. 1997. An intracellular anti-erbB-2 single-chain antibody is specifically cytotoxic to human breast carcinoma cells overexpressing erbB-2. Gene Therapy 4:317–322.PubMedCrossRefGoogle Scholar
  25. 25.
    Kim, M., M. Wright, J. Deshane, M. A. Accavitti, A. Tilden, M. Saleh, W. P. Vaughan, M. H. Carabasi, M. D. Rogers, R. D. J. Hockett, W. E. Grizzle, and D. T. Curiel. 1997. A novel gene therapy strategy for elimination of prostate carcinoma cells from human bone marrow. Human Gene Therapy 8:157–170.PubMedCrossRefGoogle Scholar
  26. 26.
    Curiel DT, Targeted tumor cytotoxicity Mediated by intracellular single-chain antioncogene antibodies. Gene Therapy in Advances in pharmacology Ed J.Thomas August. Academic Press Vol. 40:51–84.Google Scholar
  27. 27.
    McCafferty, J., Griffiths, A.D., Winter, G., and Chriswell, D.J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348,552–554.PubMedCrossRefGoogle Scholar
  28. 28.
    Rodenburg, C., Mernaugh, R., Bilbao, G., Khazaeli M.B. (1998) Production of a single cahin anti-CEA antibody from the hybridoma cell line T84.66 using a modified colony-lift selection procedure to detect antigen-positive scFv bacterial clones. Hybridoma 17, 1–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Guadalupe Bilbao
    • 1
  • Juan Luis Contreras
    • 2
  • David T. Curiel
    • 1
  1. 1.Gene Therapy CenterThe University of Alabama at BirminghamBirminghamUSA
  2. 2.Department of SurgeryThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations