Skip to main content

Intracellular Single Chain Antibodies — Methods for Derivation and Employment

  • Chapter
Antibody Engineering

Part of the book series: Springer Lab Manuals ((SLM))

  • 1155 Accesses

Abstract

The delineation of the molecular basis of cancer in general, allows for the possibility of specific intervention at the molecular level for therapeutic purposes. To this end, three main approaches have been developed: mutation compensation, molecular chemotherapy and genetic immunopotentiation. The strategy of mutation compensation aims at correcting the specific genetic defects in cancer cells. Such correction is accomplished by either ablation of oncogenic products, replacement of cellular tumor suppressor genes, or interference with dysregulated signal transduction pathways. A second strategy is molecular chemotherapy, which aims at increasing the specificity of drug delivery or to increase tolerance to standard chemotherapeutic regimens. A third strategy, genetic immunotherapy, aims at augmenting the specificity and/or the magnitude of the normal immune response to tumors. For each of these conceptual approaches, human clinical protocols have entered Phase I clinical trials to assess dose escalation, safety, and toxicity issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krol, A.V., Stuitje, A.R. (1988) Modulation of eukaryotic gene expression by complement RNA or DNA sequences. Biotechniques. 6, 958–976.

    PubMed  Google Scholar 

  2. Helene, C., Toulme, J-J. (1990) Specific regulation of gene expression by antisense, sense, and antigene nucleic acids. Biochemica and Biophysica, 1049, 99–125.

    Article  CAS  Google Scholar 

  3. Gibson, I. (1996) Antisense approaches to the gene therapy of cancer. Cancer Metastasis Rev., 15, 287–299.

    Article  PubMed  CAS  Google Scholar 

  4. Milligan, J. F., R. J. Jones, B. C. Froehler, and M. D. Matteucci. 1994. Development of antisense therapeutics. Implications for cancer gene therapy. Ann. N. Y. Acad. Sci. 716:228–241.

    Article  CAS  Google Scholar 

  5. Stein, C.A., Cheng, Y-C. (1993) Antisense oligonucleotides as therapeutic agents — Is the bullet really magic? Science, 261, 1004–1012.

    Article  CAS  Google Scholar 

  6. Stein, C. A. (1995) Does antisense exist? Nat. Med., 1, 1119–1121.

    Article  CAS  Google Scholar 

  7. Theuer, C.P., Pastan I. (1993) Immunotoxins and recombinant toxins in the treatment of solid carcinomas. Amer. J. Surg., 166, 284–288.

    Article  PubMed  CAS  Google Scholar 

  8. Brinkmann, U., Pai, L.H., Fitzgerald, D.J. (1991) B3-(Fv)-PE38KDEL, a single chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc. Natl. Acad. Sci. USA, 88, 8616–8620.

    Article  PubMed  CAS  Google Scholar 

  9. Hoogenboom, H. R., Marks, J. D., Griffiths, A. D., Winter, G. (1992) Building antibodies from their genes. Immunol. Rev., 130, 41–68.

    Article  PubMed  CAS  Google Scholar 

  10. Jost, C. R., Kurucz, I., Jacobus, C. M., Titus, J. A., George, A. J., Segal, D. M. (1994) Mammalian expression and secretion of functional single-chain Fv molecules. J. Biol. Chem., 269, 26267–26273.

    PubMed  CAS  Google Scholar 

  11. Richardson, J. H., Marasco, W. A. (1995) Intracellular antibodies: development and therapeutic potential. Trends. Biotech., 13, 306–310.

    Article  CAS  Google Scholar 

  12. Chen, S. Y., Bagley, J., Marasco, W. A. (1994) Intracellular antibodies as a new class of therapeutic molecules for gene therapy. Hum. Gene Ther., 5, 595–601.

    Article  PubMed  CAS  Google Scholar 

  13. Colcher, D., Bird, R., Roselli, M. (1990) In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J. Natl. Can. Inst., 82, 1191–1197.

    Article  CAS  Google Scholar 

  14. Wawrzynczak, E.J. (1992) Rational design of immunotoxins: current progress and future prospects. Anti-Cancer Drug Design, 7, 427–441.

    PubMed  CAS  Google Scholar 

  15. Mykebust, A.T., Godal, A., Fodstad, O. (1994) Targeted therapy with immunotoxins in a nude rat model for leptomenineal growth of human small cell cancer. Can. Res. 54, 2146–2150.

    Google Scholar 

  16. Marasco, W.A., Haseltine, W.A., Chen, S-Y. (1993) Design, intracellular expression, and activity of human anti-human immunodeficiency virus type 1 gp 120 singlechain antibody. Proc. Natl. Acad. Sci. USA, 90, 7889–7893.

    Article  PubMed  CAS  Google Scholar 

  17. Friedman, P.N., Chance, D.F., Trail, P.A. (1993) Antitumor activity of the singlechain immunotoxin BR96 sFv-PE40 against established breast and lung tumor xenografts. T. Immunol., 150. 3054–3061.

    CAS  Google Scholar 

  18. Werge, T.M., Biocca, S., Cattaneo, A. (1990) Cloning andintracellular expression of a monoclonal antibody to the p2lras protein. FEBS Lett., 274, 193–198.

    Article  PubMed  CAS  Google Scholar 

  19. Deshane, J., Loechel, F., Conry, R. M., Siegal, G. P., King, C. R., Curiel, D. T. (1994) Intracellular single-chain antibody directed against erbB2 down-regulates cell surface erbB2 and exhibits a selective anti-proliferative effect in erbB2 overexpressing cancer cell lines. Gen. Ther..1.1332–337.

    CAS  Google Scholar 

  20. Deshane, J., G. P. Siegal, R. D. Alvarez, M. H. Wang, M. Feng, G. Cabrera, T. Liu, M. Kay, and D. T. Curiel. 1995. Targeted tumor killing via an intracellular antibody against erbB-2. Journal. of. Clinical. Investigation. 96:2980–2989.

    Article  PubMed  CAS  Google Scholar 

  21. Deshane, J., J. Grim, S. Loechel, G. P. Siegal, R. D. Alvarez, and D. T. Curiel. 1996. Intracellular antibody against erbB-2 mediates targeted tumor cell eradication by apoptosis. Cancer Gene Therapy. 3:89–98.

    PubMed  CAS  Google Scholar 

  22. Grim, J., J. Deshane, M. Feng, A. Lieber, M. Kay, and D. T. Curiel. 1996. erbB-2 knockout employing an intracellular single-chain antibody (sFv) accomplishes specific toxicity in erbB-2-expressing lung cancer cells. American. Journal. of. Respiratory. Cell &. Molecular. Biology. 15:348–354.

    Article  CAS  Google Scholar 

  23. Barnes, D. M., J. Deshane, G. P. Siegal, R. D. Alvarez, and D. T. Curiel. 1996. Novel gene therapy strategy to accomplish growth factor modualtion induces enhanced tumor cell chemosensitivity. Clinical Cancer Research 2:1089–1095.

    PubMed  CAS  Google Scholar 

  24. Wright, M., J. Grim, M. Kim, T. V. Strong, G. P. Siegal, and D. T. Curiel. 1997. An intracellular anti-erbB-2 single-chain antibody is specifically cytotoxic to human breast carcinoma cells overexpressing erbB-2. Gene Therapy 4:317–322.

    Article  PubMed  CAS  Google Scholar 

  25. Kim, M., M. Wright, J. Deshane, M. A. Accavitti, A. Tilden, M. Saleh, W. P. Vaughan, M. H. Carabasi, M. D. Rogers, R. D. J. Hockett, W. E. Grizzle, and D. T. Curiel. 1997. A novel gene therapy strategy for elimination of prostate carcinoma cells from human bone marrow. Human Gene Therapy 8:157–170.

    Article  PubMed  CAS  Google Scholar 

  26. Curiel DT, Targeted tumor cytotoxicity Mediated by intracellular single-chain antioncogene antibodies. Gene Therapy in Advances in pharmacology Ed J.Thomas August. Academic Press Vol. 40:51–84.

    Google Scholar 

  27. McCafferty, J., Griffiths, A.D., Winter, G., and Chriswell, D.J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348,552–554.

    Article  PubMed  CAS  Google Scholar 

  28. Rodenburg, C., Mernaugh, R., Bilbao, G., Khazaeli M.B. (1998) Production of a single cahin anti-CEA antibody from the hybridoma cell line T84.66 using a modified colony-lift selection procedure to detect antigen-positive scFv bacterial clones. Hybridoma 17, 1–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Curiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bilbao, G., Contreras, J.L., Curiel, D.T. (2001). Intracellular Single Chain Antibodies — Methods for Derivation and Employment. In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04605-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04605-0_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41354-7

  • Online ISBN: 978-3-662-04605-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics