Skip to main content

Miniantibodies

  • Chapter
Book cover Antibody Engineering

Part of the book series: Springer Lab Manuals ((SLM))

Abstract

The term “miniantibodies” describes artificial multivalent or multispecific recombinant antibody fragments. They resemble natural antibodies in carrying two or four binding sites with a flexible arrangement and a long “wing span” but they are much smaller, as they consist only of fusions of a scFv to an oligomerization module. Applications of multivalent and bispecific antibody fragments in a variety of formats have been reviewed (Plückthun and Pack 1997; Carter and Merchant 1997). Approaches to quantify the avidity gain achieved by the multivalency effect present in all the described miniantibody models have been reported (Crothers and Metzger 1972, Plückthun and Pack 1997, Müller et al. 1998b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt KM, Pelletier JN, Müller KM, Alber T, Michnick SW, Plückthun A (2000) A heterodimeric coiled-coil peptide pair selected in vivo from a designed library-versuslibrary ensemble. T Mol Biol 295:627–639

    Article  CAS  Google Scholar 

  • Bass S, Gu Q, Christen A (1996) Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R 1 pA. J Bacteriol 178: 1154–1161

    PubMed  CAS  Google Scholar 

  • Bass S, Gu Q, Christen A, Bothrnann H, Plückthun A (1998) Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nature Biotechnol 16:376–380

    Article  Google Scholar 

  • Bothmann H, Plückthun A (2000) The periplasmic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA. I. Increased functional expresssion of antibody fragments with and without cis-prolines. J Biol Chem 275:17100–17105

    Article  PubMed  CAS  Google Scholar 

  • Burton DR (1985) Immunoglobulin G: functional sites. Mol Immunol 22:161–206

    Article  PubMed  CAS  Google Scholar 

  • Carter P, Merchant AM (1997) Engineering antibodies for imaging and therapy. Curr Opinion Biotechnol 8:449–454

    Article  CAS  Google Scholar 

  • Crothers DM, Metzger H (1972) The influence of polyvalency on the binding properties of antibodies. Immunochemistry 9:341–357

    Article  PubMed  CAS  Google Scholar 

  • Dürr E, Jelesarov I, Bosshard HR (1999) Extremely fast folding of a very stable leucine zipper with a strengthened hydrophobic core and lacking electrostatic interactions between helices. Biochemistry 38:870–880

    Article  PubMed  Google Scholar 

  • Eisenberg D, Wilcox W, Eshita SM, Pryciak PM, Ho SP and DeGrado WF (1986) The design, synthesis, and crystallization of an alpha-helical peptide. Proteins 1:16–22

    Article  PubMed  CAS  Google Scholar 

  • Ge L, Knappik A, Pack P, Freund C, Plückthun A (1995) Expressing antibodies in Escherichia coli. In: Antibody Engineering, 2nd edition, Borrebaeck CAK (ed) Oxford University Press, pp 229–266

    Google Scholar 

  • Harbury PB, Zhang T, Kim PS, Alber T (1993) A switch between two-, three-, and fourstranded coiled coils in GCN4 leucine zipper mutants. Science 262:1401–1407

    Article  PubMed  CAS  Google Scholar 

  • Hill RB, DeGrado WF (1998) Solution structure of a2D, a nativelike de novo designed protein. J Am Chem Soc 120:1138–1145

    Article  CAS  Google Scholar 

  • Horn U, Strittmatter W, Krebber A, Knüpfer U, Kujau M, Wenderoth R, Müller K, Matzku S, Plückthun A, Riesenberg D (1996) High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions. (1996) Appl Microbiol Biotechnol 46:524–532

    Article  CAS  Google Scholar 

  • Huston JS, Mudgett-Hunter M, Tai M-S, McCartney J, Warren F, Haber E, Oppermann H (1991) Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol 203:46–88

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey PD, Gorina S, Pavletich NP (1995) Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 Angstroms. Science 267:1498–1502

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Plückthun A (1997) Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting. Protein Engineering 10:959–966

    Article  PubMed  CAS  Google Scholar 

  • Knappik A, Plückthun A (1994) An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments. Bio Techniques 17:754–761

    CAS  Google Scholar 

  • Knappik A, Plückthun A (1995) Engineered turns of a recombinant antibody improve its in vivo folding. Protein Engineering 8:81–89

    Article  PubMed  CAS  Google Scholar 

  • Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, Plückthun A (1997) Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Irrmrrmmunol Meth 201:35–55

    Article  CAS  Google Scholar 

  • Lindner P, Guth B, Wülfing C, Krebber C, Steipe B, Müller F, Plückthun A (1992) Purification of native proteins from the cytoplasm and periplasm of Escherichia coli using IMAC and histidine tails: a comparison of proteins and protocols. Methods 4:41–56

    Article  CAS  Google Scholar 

  • Lindner P, Bauer K, Krebber A, Nieba L, Kremmer E, Krebber C, Honegger A, Klinger B, Mocikat R, Plückthun A (1997) Specific detection of his-tagged proteins with recombinant anti-his tag scFv-phosphatase or scFv-phage fusions. Bio Techniques 22:140–149

    CAS  Google Scholar 

  • Maurer R, Meyer BJ, Ptashne M (1980) Gene regulation at the right operator (O R ) of bacteriophage I. O R 3 and autogenous negative control by repressor. J Mol Biol 139:147–161

    Article  PubMed  CAS  Google Scholar 

  • Müller KM, Arndt KM, Strittmatter W, Plückthun A (1998a) The first constant domain (CH1 and CL) of an antibody used as heterodimerization domain for bispecific miniantibodies. FEBS Lett 422:259–264

    Article  PubMed  Google Scholar 

  • Müller KM, Arndt KM, Plückthun A (1998b) Model and simulation of multivalent binding to fixed ligands. Anal Biochem 261:149–158

    Article  PubMed  Google Scholar 

  • Müller KM, Arndt KM, Plückthun A (1998c) A dimeric bispecific miniantibody combines two specificities with avidity. FEBS Lett 432:45–49

    Article  PubMed  Google Scholar 

  • Müller KM, Arndt KM, Alber T (2000) Protein Fusions to coiled-coil domains. Methods Enzymol 328: 261–282

    Article  PubMed  Google Scholar 

  • Nieba L, Honegger A, Krebber C, Plückthun A (1997) Disrupting tne hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Engineering 10:435–444

    Article  PubMed  CAS  Google Scholar 

  • O’Shea EK, Klemm JD, Kim PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254:539–544

    Article  PubMed  Google Scholar 

  • Pack P (1994) PhD Thesis, Universität München, Germany

    Google Scholar 

  • Pack P, Knappik A, Krebber C, Plückthun A (1992) Mono- and bivalent antibody fragments produced in E. coli: binding properties and folding in vivo. In: Harnessing Biotechnology for the 21st Century. American Chemical Society Conference Proceedings Series. Ladisch MR and Bose A (eds.) ACS

    Google Scholar 

  • Pack P, Plückthun A (1992) Miniantibodies: Use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity in Escherichia coli. Biochemistry 31:1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Pack P, Kujau M, Schroeckh V, Knüpfer U, Wenderoth R, Riesenberg D, Plückthun A (1993) Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fermentation of Escherichia coli. Biotechnology 11:1271–1277

    PubMed  CAS  Google Scholar 

  • Pack P, Müller K, Zahn R, Plückthun A (1995) Tetravalent miniantibodies with a high avidity assembling in Escherichia coli. J Mol Biol 246:28–34

    Article  PubMed  CAS  Google Scholar 

  • Plückthun A and Pack P (1997) New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology 3: 83–105

    Article  PubMed  Google Scholar 

  • Plückthun A, Krebber A, Krebber C, Horn U, Knüpfer U, Wenderoth R, Nieba L, Proba K, Riesenberg D (1996) Producing antibodies in Escherichia coli: From PCR to fermentation. In: Antibody Engineering: A Practical approach. McCafferty J and Hoogenboom HR (eds), IRL press, Oxford, pp 203–252

    Google Scholar 

  • Rheinnecker M, Hardt C, Ilag LL, Kufer P, Gruber R, Hoess A, Lupas A, Rottenberger C, Plückthun A, Pack P (1996) Multivalent antibody fragments with high functional affinity for a tumor-associated carbohydrate antigen. J Immunol 157:2989–2997

    PubMed  CAS  Google Scholar 

  • Rudolph R, Lilie H (1996) In vitro folding of inclusion body proteins. FASEB J 10:49–56

    PubMed  CAS  Google Scholar 

  • Schroeckh V, Kujau M, Knüpfer U, Wenderoth R, Mörbe J, Riesenberg D (1996) Formation of recombinant proteins in Escherichia coli under control of a nitrogen regulated promoter at low and high cell densities. J. Biotechnol. 49:45–58

    Google Scholar 

  • Willuda J, Honegger A, Waibel R, Schubiger A, Stahel R, Zangemeister-Wittke U, Plückthun A (1999) High thermal stability is essential for tumor targeting of antibody fragments: Engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Research 59:5758–5767

    PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M 13mp 18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Plückthun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindner, P., Plückthun, A. (2001). Miniantibodies. In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04605-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04605-0_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41354-7

  • Online ISBN: 978-3-662-04605-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics