Expression of Antibody Fragments in Plant Cells

Part of the Springer Lab Manuals book series (SLM)

Abstract

Stable expression of active antibodies and antibody fragments has been achieved in plant cells. It has been shown for complete antibodies, Fab fragments, scFv’s and single VH domains (for review see Conrad and Fiedler 1998). Production of antibodies in transgenic plants and plant cells is generally of interest if high quantities of a specific antibody fragment are needed, i.e. therapeutic antibodies in human medicine. Other fields of application are monitoring of diseases and purification of specific products. Plant organs and especially storage organs like seeds and tubers are traditionally used as human and animal food. Therefore, a direct application by feeding the plant material containing the therapeutic antibody fragments could force the development of new passive vaccination strategies in human and veterinary medicine. A general advantage of plant expression systems are the relatively low production costs. Specific media and sterile conditions are avoided if the plants are grown in soil. Furthermore, human and animal pathogens such as viruses and bacteria can be excluded per se. A main advantage is the possibility to produce in specific plant storage organs that are normally used in nutrition. Growing and harvesting technologies for such basic plant products have already been developed and have only to be adapted for the development of new plantibodies for passive immunization.

Keywords

Sucrose Luminal Cytosol Creatine Kanamycin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, P., Walden, R. and Draper, J. (1988): Vectors for the transformation of plant cells using Agrobacterium. In: Plant Genetic Transformation and Gene Expression. Draper, T., Scott, R., Armitage, P., Walden, R. (Eds.), The Alden Press, Oxford.Google Scholar
  2. Askari, B. (1999): Expression and characterisation of thioredoxin-single-chain-Fv fusion proteins in bacteria and plants. Dissertation an der Martin-Luther-Universität Halle-Wittenberg.Google Scholar
  3. Artsaenko, O., Kettig, B., Fiedler, U., Conrad, U. and Düring, K. (1998): Potato tubers as a biofactory for recombinant antibodies. Molecular Breeding 4, 313–319.CrossRefGoogle Scholar
  4. Artsaenko, O., Peisker, M., zur Nieden, U., Fiedler, U., Weiler, E.W., Müntz, K. and Conrad, U. (1995): Expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. Plant J. 8, 745–750.PubMedCrossRefGoogle Scholar
  5. Bäumlein, H., Boerjan, W., Nagy, I., Bassüner, R., van Montagu, M., Inze, D. and Wobus, U. (1991): A novel seed protein gene from Vicia faba is developmentally regulated in transgenic tobacco and Arabidopsis plants. Mol. Gen. Genet. 225, 459–467.PubMedGoogle Scholar
  6. Bäumlein, H., Müller, A.J., Schiemann, J., Helbing, D., Manteuffel, R. and Wobus, U. (1987): A legumin B gene of Vicia faba is expressed in developing seeds of transgenic tobacco. Biol. Zentralbl. 106, 569–575.Google Scholar
  7. Bruyns, A.M., de Jaeger, G., de Neve, M., de Wilde, C., van Montagu, M. and Depicker, A. (1996): Bacterial and plant-produced scFv proteins have similar antigen-binding properties. FEBS Letters 386, 5–10.PubMedCrossRefGoogle Scholar
  8. Conrad, U. and Fiedler, U. (1998): Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol. Biol. 38, 101–109.PubMedCrossRefGoogle Scholar
  9. De Jaeger, G., Buys, E., Eeckhout, D., De Wilde, C., Jacobs, A., Kapila, J., Angemon, G., van Montagu, M., Gerats, T. and Depicker, A. (1999): High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. Eur. J. Biochem. 259, 426–434.PubMedCrossRefGoogle Scholar
  10. Fecker, L., Kaufmann, N., Commandeur, U., Commandeur, J., Koenig, R. and Burgemeister, W. (1996): Expression of single-chain antibody fragments (scFv) specific for beet necrotic yellow vein virus coat protein or 25 kDa protein in Escherichia coli and Nicotiana benthamiana. Plant Mol. Biol. 32, 979–986.PubMedCrossRefGoogle Scholar
  11. Fiedler, U. and Conrad, U. (1995): High-level production and long-term storage of engineered antibodies in transgenic tobacco seeds. Bio/Technology 13, 1090–1093.PubMedCrossRefGoogle Scholar
  12. Fiedler, U., Phillips, J., Artsaenko, O. and Conrad, U. (1997): Optimization of scFv antibody production in transgenic plants. Immunotechnology 3, 205–216.PubMedCrossRefGoogle Scholar
  13. Firek, S., Draper, J., Owen, M.R.L., Gandecha, A., Cockburn, B. and Whitelam, G.C. (1993): Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol. Biol. 23, 861–870.PubMedCrossRefGoogle Scholar
  14. Franck, A., Guilley, H., Jonard, G., Richards, K. and Hirth, L. (1980): Nucleotide sequence of the Cauliflower Mosaic Virus DNA. Cell 21, 285–294.PubMedCrossRefGoogle Scholar
  15. Franconi, R., Roggero, P., Pirazzi P., Arias, F.J., Desiderio, A., Bitti, O., Pashkoulov D., Mattei B., Bracci L., Masenga V., Milne, R.G. and Benvenuto, E. (1999): Functional expression in bacteria and plants of an scFv antibody fragment against tospoviruses. Immunotechnology 4, 189–201.PubMedCrossRefGoogle Scholar
  16. Frisch, D.A., Harris-Haller, L.W., Yokubaitis, N.T., Thomas, T.L., Hardin, D.H. and Hall, T.C. (1995): Complete sequence of binary vector Bin 19. Plant Mol. Biol. 27, 405–409.PubMedCrossRefGoogle Scholar
  17. Munroe, S. and Pelham, H. (1987): A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899–907.CrossRefGoogle Scholar
  18. Owen, M.R.L., Gandecha, A., Cockburn, B., Whitelam, G. (1992): Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Bio/Technology 10, 790–794.PubMedCrossRefGoogle Scholar
  19. Saito, K., Kaneko, H., Yamazaki, M., Yoshida, M., and Murakoshi, I. (1990): Stable transfer and expression of chimeric genes in licorice (Glycyrrhiza uralensis) using an Ri plasmid binary vector. Plant Cell Reports 8, 718–721.CrossRefGoogle Scholar
  20. Sambrook, J., Maniatis, T. and Fritsch, E. F. (1989): Molecular Cloning: A laboratory manual. Cold Spring Harbor. Cold Spring Harbour Laboratory Press, New YorkGoogle Scholar
  21. Schouten, A., Roosien, J., de Boer, J.M., Wilmink, A., Rosso, M.N., Bosch, D., Stiekema, W.J., Gommers, F.J., Bakker, J. and Schots, A. (1997): Improving scFv antibody expression levels in the plant cytosol. FEBS Letters 415, 235–241.PubMedCrossRefGoogle Scholar
  22. Schouten, A., Roosien, J., van Engelen, F.A., de Jong, G.A.M., Borst-Vrenssen, A.W.M., Zilverentant, J.F., Bosch, D., Stiekema, W.J., Gommer, F.J., Schots, A. and Bakker, J. (1996): The C-terminal KDEL sequence increases the expression level of a singlechain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30, 781–793.PubMedCrossRefGoogle Scholar
  23. Tavladoraki, P., Benvenuto, E., Trinca, S., Martinis, D.D., Cattaneo, A. and Galeffi, P. (1993): Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366, 469–472.PubMedCrossRefGoogle Scholar
  24. Zambryski, P., Joos, H., Gentello, J., Leemans, J., Van Montagu, M. and Schell, J. (1983): Ti-plasmid vector for introduction of DNA into plant cells without altering their normal regeneration capacity. EMBO J. 2, 2143–2150.PubMedGoogle Scholar
  25. Zimmermann, S., Schillberg, S., Yu-Cai Liao and Fischer, R. (1998): Intracellular expression of TMV-specific single- chain Fv fragments leads to improved virus resisitance in Nicotiana tabacum. Molecular Breeding 4, 369–379.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  1. 1.IPK Gatersleben06466 GaterslebenGermany
  2. 2.Klinik und Poliklinik für UrologieTU DresdenDresdenGermany

Personalised recommendations