Skip to main content

Relational Data Mining Applications: An Overview

  • Chapter

Abstract

This chapter gives an overview of applications of relational learning and inductive logic programming to data mining problems in a variety of areas. These include bioinformatics, where successful applications come from drug design, predicting mutagenicity and carcinogenicity, and predicting protein structure and function, including genome scale prediction of protein functional class. Other application areas include medicine, environmental sciences and monitoring, mechanical and traffic engineering. Applications of relational learning are also emerging in business data analysis, text and Web mining, and miscellaneous other fields, such as the analysis of musical performances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Blockeel and L. De Raedt. Top-down induction of first order logical decision trees. Artificial Intelligence, 101(1–2): 285–297, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees. In Proceedings of the Fifteenth International Conference on Machine Learning, pages 55–63. Morgan Kaufmann, 1998.

    Google Scholar 

  3. H. Blockeel, S. Dzeroski, and J. Grbovic. Simultaneous prediction of multiple chemical parameters of river water quality with TILDE. In Proceedings of the Third European Conference on Principles of Data Mining and Knowledge Discovery, pages 15–18. Springer, Berlin, 1999.

    Google Scholar 

  4. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees. Wadsworth, Belmont, CA, 1984.

    MATH  Google Scholar 

  5. S.E. Brenner, C. Chothia, T.J. Hubbard, and A.G. Murzin. Understanding protein structure: Using SCOP for fold interpretation. Methods in Enzymology, 266: 635–643, 1996.

    Article  Google Scholar 

  6. C. Bryant. Data mining via ILP: The application of PROGOL to a database of enantioseparations. In Proceedings of the Seventh International Workshop on Inductive Logic Programming, pages 85–92. Springer, Berlin, 1997.

    Chapter  Google Scholar 

  7. M.E. Califf and R. Mooney. Relational learning of pattern match rules for information extraction. In Proceedings of the Sixteenth National Conference on Artificial Intelligence, pages 328–334. AAAI Press, Menlo Park, CA, 1999.

    Google Scholar 

  8. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In Proceedings Fifth European Working Session on Learning, pages 151–163. Springer, Berlin, 1991.

    Google Scholar 

  9. T. Cleveland. Pirkle-concept chiral stationary phases for the HPLC separation of pharmaceutical racemates. Journal of Liquid Chromatography, 18(4): 649–671, 1995.

    Article  Google Scholar 

  10. W. Cohen. Recovering software specifications with inductive logic programming. In Proceedings of the Twelfth National Conference on Artificial Intelligence, MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  11. W. Cohen. Learning to classify English text with ILP methods. In L. De Raedt, editor, Advances in Inductive Logic Programming, pages 124–143. IOS Press, Amsterdam, 1996.

    Google Scholar 

  12. W. Cohen and P. Devanbu. A Comparative Study of Inductive Logic Programming Methods for Software Fault Prediction. In The Fourteenth International Conference on Machine Learning, pages 66–74. Morgan Kaufmann, San Francisco, CA, 1997.

    Google Scholar 

  13. M. Craven and S. Slattery. Relational learning with statistical predicate invention: Better models for hypertext. Machine Learning, 43: 97–119, 2001.

    Article  MATH  Google Scholar 

  14. J. Cussens and S. Dzeroski, editors. Learning Language in Logic. Springer, Berlin, 2000.

    MATH  Google Scholar 

  15. L. De Raedt and M. Bruynooghe. A Theory of Clausal Discovery. In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, pages 1058–1063. Morgan Kaufmann, San Mateo, CA, 1993.

    Google Scholar 

  16. J. Dimec, S. Dzeroski, L. Todorovski, and D. Hristovski. WWW search engine for Slovenian and English medical documents. In Proc. Fifteenth International Congress for Medical Informatics, pages 547–552. IOS Press, Amsterdam, 1999.

    Google Scholar 

  17. B. Dolsak, I. Bratko, and A. Jezernik. Applications of machine learning in finite element computation. In R.S. Michalski, I. Bratko, and M. Kubat, editors, Machine Learning, Data Mining and Knowledge Discovery: Methods and Applications, pages 147–171. John Wiley and Sons, Chichester, 1997.

    Google Scholar 

  18. M. J. Dovey. Analysis of Rachmaninoff’s piano performances using inductive logic programming. In Proceedings of the Eighth European Conference on Machine Learning, pages 279–282. Springer, Berlin, 1995.

    Google Scholar 

  19. S. Dzeroski, H. Blocked, B. Kompare, S. Kramer, B. Pfahringer, and W. Van Laer. Experiments in Predicting Biodegradability. In Proceedings of the Ninth International Workshop on Inductive Logic Programming, pages 80–91. Springer, Berlin, 1999.

    Chapter  Google Scholar 

  20. S. Dzeroski and I. Bratko. Applications of inductive logic programming. In L. De Raedt, editor, Advances in Inductive Logic Programming, pages 65–81. IOS Press, Amsterdam, 1996.

    Google Scholar 

  21. S. Dzeroski, B. Cestnik and I. Petrovski. Using the mestimate in rule induction. Journal of Computing and Information Technology, 1(1): 37–46, 1993.

    Google Scholar 

  22. S. Dzeroski, L. Dehaspe, B. Ruck and W. Walley. Classification of river water quality data using machine learning. In Proceedings of the Fifth International Conference on the Development and Application of Computer Techniques to Environmental Studies, Vol. I: Pollution modelling, pages 129–137. Computational Mechanics Publications, Southampton, 1994.

    Google Scholar 

  23. S. Dzeroski, J. Grbovic, and D. Demsar. Predicting chemical parameters of river water quality from bioindicator data. Applied Intelligence, 13(1): 7–17, 2000.

    Article  Google Scholar 

  24. S. Dzeroski, N. Jacobs, M. Molina, C. Moure, S. Muggleton, and W. Van Laer. Detecting traffic problems with ILP. In Proceedings of the Eighth International Conference on Inductive Logic Programming, pages 281–290. Springer, Berlin, 1998.

    Chapter  Google Scholar 

  25. S. Dzeroski, S. Schulze-Kremer, K. Heidtke, K. Siems, D. Wettschereck, and H. Blockeel. Diterpene structure elucidation from 13C NMR spectra with Inductive Logic Programming. Applied Artificial Intelligence, 12: 363–383, 1998.

    Article  Google Scholar 

  26. W. Emde and D. Wettschereck. Relational Instance-Based Learning. In Proceedings of the Thirteen International Conference on Machine Learning, pages 122–130. Morgan Kaufmann, San Francisco, CA, 1996.

    Google Scholar 

  27. P. Finn, S. Muggleton, CD. Page, and A. Srinivasan. Pharmacophore discovery using the inductive logic programming system PROGOL. Machine Learning, 30: 241–271, 1998.

    Article  Google Scholar 

  28. C. Hansch, R. Li, J. Blaney, and R. Langridge. Comparison of the inhibition of escherichia coli and lactobacillus casei dihydrofolate reductase by 2,4-diamino-5-(substituted-benzyl) pyrimidines: Quantitative structure-activity relationships, X-ray crystallography, and computer graphics in structure-activity analysis. J. Med. Chem. , 25: 777–784, 1992.

    Article  Google Scholar 

  29. C. Helma, R.D. King, S. Kramer, and A. Srinivasan. The predictive toxicology challenge 2000–2001. Bioinformatics, 17: 107–108, 2001. Web pages at http://www.informatik.uni-freiburg.de/~ml/ptc/.

    Article  Google Scholar 

  30. T. Horváth, S. Wrobel, and U. Bohnebeck. Relational instance-based learning with lists and terms. Machine Learning, 43(1/2): 53–80, 2001.

    Article  MATH  Google Scholar 

  31. A. Karalic and I. Bratko. First order regression. Machine Learning, 26(2/3): 147–176, 1997.

    Article  MATH  Google Scholar 

  32. R.D. King, A. Karwath, A. Clare, and L. Dehaspe. Accurate prediction of protein functional class in the M. tuberculosis and E. coli genomes using data mining. Yeast (Comparative and Functional Genomics), 17: 283–293, 2000.

    Google Scholar 

  33. R.D. King, A. Karwath, A. Clare, and L. Dehaspe. Genome scale prediction of protein functional class from sequence using data mining. In Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining, pages 384–389. ACM Press, New York, 2000.

    Chapter  Google Scholar 

  34. R.D. King, S. Muggleton, R. Lewis, and M.J.E. Sternberg. Drug design by machine learning: The use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihy-drofolate reductase. Proc. of the National Academy of Sciences of the USA 89(23): 11322–11326, 1992.

    Article  Google Scholar 

  35. R.D. King, A. Srinivasan, and M.J.E. Sternberg. Relating chemical activity to structure: An examination of ILP successes. New Generation Computing, 13: 411–433, 1995.

    Article  Google Scholar 

  36. D. Kneller, F. Cohen, and R. Langridge. Improvements in protein secondary structure prediction by an enhanced neural network. J. Mol Biol, 214: 171–182, 1990.

    Article  Google Scholar 

  37. A.J. Knobbe, M. de Haas, and A. Siebes. Propositionalization and aggregates. In Proceedings of the Fifth European Conference on Principles of Data Mining and Knowledge Discovery. Springer, Berlin, 2001.

    Google Scholar 

  38. A.J. Knobbe, B. Marseille, O. Moerbeek, and D. van der Wallen. Results in data mining for adaptive system management. In Proceedings of the Eighth Belgian-Dutch Conference on Machine Learning, ATO-DLO, Wageningen, The Netherlands.

    Google Scholar 

  39. N. Lavrac, S. Dzeroski, V. Pirnat, and V. Krizman. The utility of background knowledge in learning medical diagnostic rules. Applied Artificial Intelligence, 7:273–293, 1993.

    Article  Google Scholar 

  40. W.T.H. Loggie. Using inductive logic programming to assist in the retrieval of relevant information from an electronic library system. In Notes of the Workshop on Data Mining, Decision Support, Meta Learning and ILP held at The Fourth European Conference on Principles of Data Mining and Knowledge Discovery, Lyon, Prance, September 2000. Available at http://eric.univ-lyon2.fr/~pkdd2000/Download/#Workshops.

    Google Scholar 

  41. F. Mizoguchi, H. Ohwada, M. Daidoji, S. Shirato. Using inductive logic programming to learn classification rules that identify glaucomatous eyes. In N. Lavrac, E. Keravnou, B. Zupan, editors, Intelligent Data Analysis in Medicine and Pharmacology, pages 227–242. Kluwer, Boston, 1997.

    Chapter  Google Scholar 

  42. K. Morik, P. Brockhausen, and T. Joachims. Combining statistical learning with a knowledge-based approach — A case study in intensive care monitoring. In Proceedings of the Sixteenth International Conference on Machine Learning, pages 268–277. Morgan Kaufmann, San Francisco, CA, 1999.

    Google Scholar 

  43. S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13: 245–286, 1995.

    Article  Google Scholar 

  44. S.H. Muggleton, C.H. Bryant, and A. Srinivasan. Learning Chomsky-like grammars for biological sequence families. In Proceedings of the Seventeenth International Conference on Machine Learning, pages 631–638. Morgan Kaufmann, San Francisco, CA, 2000.

    Google Scholar 

  45. S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of the First Conference on Algorithmic Learning Theory, pages 368–381. Ohmsma, Tokyo, Japan, 1990.

    Google Scholar 

  46. S. Muggleton, R. D. King, and M. J. E. Sternberg. Protein secondary structure prediction using logic-based machine learning. Protein Engineering, 5(7): 647–657, 1992.

    Article  Google Scholar 

  47. S. Muggleton, CD. Page, and A. Srinivasan. An initial experiment into stereochemistry-based drug design using inductive logic programming. In Proceedings of the Sixth International Workshop on Inductive Logic Programming, pages 25–40. Springer, Berlin, 1997.

    Chapter  Google Scholar 

  48. H. Nielsen, J. Engelbrecht, S. Brunak, and G. von Hejne. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 10: 1–6.

    Google Scholar 

  49. U. Pompe, I. Kononenko, and T. Makse. An application of ILP in a musical database: Learning to compose the two-voice counterpoint. In Proceedings of the MLnet Workshop on Data Mining with ILP, pages 1–11. University of Bari, Italy, 1996.

    Google Scholar 

  50. J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5: 239–266, 1990.

    Google Scholar 

  51. S. Roberts, W. Van Laer, N. Jacobs, S. Muggleton, and J. Broughton. A comparison of ILP and propositional systems on propositional traffic data. In Proceedings of the Eighth International Conference on Inductive Logic Programming, pages 291–299. Springer, Berlin, 1998.

    Chapter  Google Scholar 

  52. C. Sammut and T. Zrimec. Learning to classify X-ray images using relational learning. In Proceedings of the Tenth European Conference on Machine Learning, pages 55–60. Springer, Berlin, 1998.

    Google Scholar 

  53. A. Siebes and P. Berka. Discovery Challenge. Notes of the workshop held at The Fourth European Conference on Principles of Data Mining and Knowledge Discovery, Lyon, Prance, September 2000. Available at http://eric.univ-lyon2.fr/~pkdd2000/Download/#Challenge.

    Google Scholar 

  54. A. Srinivasan. The Aleph Manual. Technical Report, Computing Laboratory, Oxford University, 2000. Available at http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

    Google Scholar 

  55. A. Srinivasan and R.D. King. Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes. In Proceedings of the Sixth International Workshop on Inductive Logic Programming, pages 89–104. Springer, Berlin, 1997.

    Chapter  Google Scholar 

  56. A. Srinivasan, R.D. King, and D.W. Bristol. An assessment of ILP-assisted models for toxicology and the PTE-3 experiment. In Proceedings of the Ninth International Workshop on Inductive Logic Programming, pages 291–302. Springer, Berlin, 1999.

    Chapter  Google Scholar 

  57. A. Srinivasan, R.D. King, and D.W. Bristol. An assessment of submissions made to the predictive toxicology challenge. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pages 270–275. Morgan Kaufmann, San Francisco, CA, 1999.

    Google Scholar 

  58. A. Srinivasan, R.D. King, S. Muggleton, and M.J.E. Sternberg. Carcinogenesis prediction using inductive logic programming. In N. Lavrac, E. Keravnou, B. Zupan, editors, Intelligent Data Analysis in Medicine and Pharmacology, pp. 243–260. Kluwer, Boston, 1997.

    Chapter  Google Scholar 

  59. A. Srinivasan, S.H. Muggleton, R.D. King, and M.J.E. Sternberg. Mutagenesis: ILP experiments in a non-determinate biological domain. In Proceedings of the Fourth International Workshop on Inductive Logic Programming, pages 217–232. GMD, Sankt Augustin, Germany, 1994.

    Google Scholar 

  60. A. Srinivasan, S. Muggleton, R. D. King, and M. J. E. Sternberg. Theories for mutagenicity: A study of first-order and feature based induction. Artificial Intelligence, 85(1,2): 277–299, 1996.

    Article  Google Scholar 

  61. M. Turcotte, S.H. Muggleton, and M.J.E. Sternberg. The effect of relational background knowledge on learning of protein three-dimensional fold signatures. Machine Learning, 43(1/2): 81–96, 2001.

    Article  MATH  Google Scholar 

  62. E. Van Baelen and L. De Raedt. Analysis and prediction of piano performances using Inductive Logic Programming. In Proceedings of the Sixth International Workshop on Inductive Logic Programming, pages 55–71. Springer, Berlin, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Džeroski, S. (2001). Relational Data Mining Applications: An Overview. In: Džeroski, S., Lavrač, N. (eds) Relational Data Mining. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04599-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04599-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07604-6

  • Online ISBN: 978-3-662-04599-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics