Advertisement

Pauli’s Ghost: The Conception and Discovery of Neutrinos

  • Michael Riordan
Chapter

Abstract

When Wolfgang Pauli conceived his idea of the neutrino in 1930, it was substantially different from the ghostly particles recognized today. That December he proposed a light, neutral, spin-1/2 particle he at first called the “neutron” as a “desperate remedy” for the energy crisis of that time — the continuous energy spectrum of electrons emitted in nuclear beta decay [1.1].1 The crisis had grown so severe by the late 1920s and early 1930s, after experiments by Charles Ellis, Lise Meitner and their colleagues [1.3], that Niels Bohr had even begun to contemplate abandoning the sacrosanct law of energy conservation in nuclear processes ([1.4], esp. pp. 382–383). Pauli could not countenance such a radical departure from orthodoxy and suggested instead that such poltergeists might inhabit the nucleus along with protons and electrons. Their mass had to be “of the same order of magnitude as the electron mass and . . . not larger than 0.01 proton mass.” They would be electromag-netically bound within nuclei by virtue of an anomalous magnetic moment, and they might have “about 10 times the penetrating capacity of a gamma ray.” He could account for the continuous beta decay spectrum by assuming that “in beta decay a neutron is emitted together with the electron, in such a way that the sum of the energies of neutron and electron is constant” [1.1].

Keywords

Beta Decay Light Neutrino Electron Neutrino Muon Neutrino Heavy Lepton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.1
    W. Pauli, transi, in L. M. Brown, Phys. Today, Sept. 1978, 23.Google Scholar
  2. 1.2
    C. Sutton, Spaceship Neutrino (Cambridge University Press, Cambridge, 1992).Google Scholar
  3. 1.3
    C. D. Ellis and W. A. Wooster, Proc. R. Soc. (Lond.) A 117, 109 (1927);CrossRefADSGoogle Scholar
  4. 1.3a
    L. Meitner and W. Orthmann, Z. Phys. 60, 143 (1930).CrossRefADSGoogle Scholar
  5. 1.4
    N. Bohr, J. Chem. Soc. (Lond.) 135, 349 (1932).Google Scholar
  6. 1.5
    J. Chadwick, Nature 129, 312 (1932);CrossRefADSGoogle Scholar
  7. 1.5a
    J. Chadwick, Proc. R. Soc. (Lond.) A 136, 692 (1932).CrossRefADSGoogle Scholar
  8. 1.6
    E. Fermi, Z. Phys. 88, 161 (1934) [transi, in F. L. Wilson, Am. J. Phys. 36, 1150 (1960)].CrossRefADSGoogle Scholar
  9. 1.7
    H. A. Bethe and R. E. Peierls, Nature 133, 532 (1934).MATHCrossRefADSGoogle Scholar
  10. 1.8
    F. Reines, Rev. Mod. Phys. 68, 317 (1996).CrossRefADSGoogle Scholar
  11. 1.9
    A. S. Eddington, The Philosophy of Physical Science (Cambridge University Press, Cambridge, 1939).MATHGoogle Scholar
  12. 1.10
    G. Gamow, Phys. Today, July 1948, 6.Google Scholar
  13. 1.11
    J. Allen, Phys. Rev. 61, 692 (1942).CrossRefADSGoogle Scholar
  14. 1.12
    C. L. Cowan and F. Reines, Phys. Rev. 106, 825 (1957).CrossRefADSGoogle Scholar
  15. 1.13
    F. Reines and C. L. Cowan Jr., Phys. Rev. 92, 830 (1953).CrossRefADSGoogle Scholar
  16. 1.14
    C. L. Cowan Jr. et al., Science 124, 103 (1956).CrossRefADSGoogle Scholar
  17. 1.15
    F. Reines et al., Phys. Rev. 117, 159 (1960).CrossRefADSGoogle Scholar
  18. 1.16
    F. Reines and C. Cowan, Phys. Today, Aug. 1957, 12.Google Scholar
  19. 1.17
    L. M. Langer and R. J. D. Moffat, Phys. Rev. 88, 689 (1952).CrossRefADSGoogle Scholar
  20. 1.18
    E. Majorana, Nuovo Cimento 14, 171 (1937).CrossRefGoogle Scholar
  21. 1.19
    T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).MathSciNetGoogle Scholar
  22. 1.20
    L. Landau, Nucl. Phys. 3, 127 (1957);CrossRefGoogle Scholar
  23. 1.20a
    A. Salam, Nuovo Cimento 5, 299 (1957).MathSciNetCrossRefGoogle Scholar
  24. 1.21
    M. Goldhaber, L. Grodzins and A. W. Sunyar, Phys. Rev. 106, 826 (1957).CrossRefADSGoogle Scholar
  25. 1.22
    G. Feinberg, Phys. Rev. 110, 1482 (1958).CrossRefADSGoogle Scholar
  26. 1.23
    M. Schwartz, Rev. Mod. Phys. 61, 527 (1989).CrossRefADSGoogle Scholar
  27. 1.24
    M. Schwartz, “The early history of high-energy neutrino physics”, in The Rise of the Standard Model: Particle Physics in the 1960s and 1970s, ed. by L. Hoddeson et al. (Cambridge University Press, New York, 1997), p. 411.Google Scholar
  28. 1.25
    G. Danby et al., Phys. Rev. Lett. 9, 36 (1962).CrossRefADSGoogle Scholar
  29. 1.26
    L. Hoddeson et al. (eds.), The Rise of the Standard Model: Particle Physics in the 1960s and 1970s (Cambridge University Press, New York, 1997).Google Scholar
  30. 1.27
    L. Brown et al., “The rise of the Standard Model: 1964–1979”, in The Rise of the Standard Model: Particle Physics in the 1960s and 1970s, ed. by L. Hoddeson et al. (Cambridge University Press, New York, 1997), p. 3.Google Scholar
  31. 1.28
    P. Galison, Rev. Mod. Phys. 55, 477 (1983).CrossRefADSGoogle Scholar
  32. 1.29
    D. Perkins, “Gargamelle and the discovery of neutral currents”, in The Rise of the Standard Model: Particle Physics in the 1960s and 1970s, ed. by L. Hoddeson et al. (Cambridge University Press, New York, 1997), p. 428.Google Scholar
  33. 1.30
    F. J. Hasert et al., Phys. Lett. B 46, 121 (1973).ADSGoogle Scholar
  34. 1.31
    F. J. Hasert et al., Phys. Lett. B 46, 138 (1973).CrossRefADSGoogle Scholar
  35. 1.32
    A. Benvenuti et al., Phys. Rev. Lett. 32, 1457 (1974).CrossRefADSGoogle Scholar
  36. 1.33
    G. Goldhaber, “From the psi to charmed mesons: three years with the SLAC-LBL detector at SPEAR”, in The Rise of the Standard Model: Particle Physics in the 1960s and 1970s, ed. by L. Hoddeson et al. (Cambridge University Press, New York, 1997), p. 57.Google Scholar
  37. 1.34
    M. Kobayashi, “Flavor mixing and CP violation”, in The Rise of the Standard Model: Particle Physics in the 1960s and 1970s, ed. by L. Hoddeson et al. (Cambridge University Press, New York, 1997), p. 137.Google Scholar
  38. 1.35
    J. Cronin, “The discovery of CP violation”, in The Rise of the Standard Model: Particle Physics in the 1960s and 1970s, ed. by L. Hoddeson et al. (Cambridge University Press, New York, 1997), p. 114.Google Scholar
  39. 1.36
    M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).CrossRefADSGoogle Scholar
  40. 1.37
    M. Perl, “The discovery of the tau lepton”, in The Rise of the Standard Model: Particle Physics in the 1960s and 1970s, ed. by L. Hoddeson et al. (Cambridge University Press, New York, 1997), p. 79.Google Scholar
  41. 1.38
    G. Feldman, “The discovery of the r, 1975–1977: a tale of three papers”, in Proceedings of the 20th S LAC Summer Institute of Particle Physics, ed. by J. Hawthorne (Stanford University, 1992), p. 631.Google Scholar
  42. 1.39
    M. Perl et al., Phys. Rev. Lett. 35, 1489 (1975).CrossRefADSGoogle Scholar
  43. 1.40
    J. Burmeister et al., Phys. Lett. B 58, 297 (1977).ADSGoogle Scholar
  44. 1.41
    M. Nakamura, Nucl. Phys. B, Proc. Suppl. 77, 259 (1999).CrossRefADSGoogle Scholar
  45. 1.42
    L. Lederman, “The discovery of the upsilon, bottom quark, and B mesons”, in The Rise of the Standard Model: Particle Physics in the 1960s and 1970s, ed. by L. Hoddeson et al. (Cambridge University Press, New York, 1997), p. 101.Google Scholar
  46. 1.43
    F. Abe et al., Phys. Rev. D 50, 2966 (1994).CrossRefADSGoogle Scholar
  47. 1.44
    J. Yang et al., Astrophys. J. 281, 493 (1984).CrossRefADSGoogle Scholar
  48. 1.45
    D. N. Schramm and G. Steigman, Sci. Am., June 1988, 66.Google Scholar
  49. 1.46
    G. S. Abrams et al., Phys. Rev. Lett. 63, 2173 (1989).CrossRefADSGoogle Scholar
  50. 1.47
    D. Decamp et al., Phys. Lett. 231, 519 (1989).Google Scholar
  51. 1.48
    Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Michael Riordan

There are no affiliations available

Personalised recommendations