Measurement of the Cosmological Constant from Galactic Velocity Rotation Data

  • Georgios V. Kraniotis
  • Steven B. Whitehouse
Conference paper

Abstract

In this paper, a new theory of Dark Matter is proposed. Experimental analysis of several Galaxies shows how the non-gravitational contribution to galactic Velocity Rotation Curves can be interpreted as that due to the Cosmological Constant Λ. The experimentally determined values for Λ are found to be consistent with those expected from Cosmological Constraints. The Cosmological Constant is interpreted as leading to a constant energy density which in turn can be used to partly address the energy deficit problem (Dark Energy) of the Universe. The work presented here leads to the conclusion that the Cosmological Constant is negative and that the universe is decelerating.

Keywords

Dust Lution Geophysics Univer Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Rubin, A. Waterman, J. Kenney: astro-ph/9904050Google Scholar
  2. 2.
    V. Trimble: Ann. Rev. Astron. Astrophysics 25, 425 (1981)ADSCrossRefGoogle Scholar
  3. 3.
    D. Sciama: Modern Cosmology and the Dark Matter Problem, (Cambridge University Press, Cambridge 1995)Google Scholar
  4. 4.
    N.S. Kardashev: Astr. Rep. 41(6) 715 (1997)ADSGoogle Scholar
  5. 5.
    J. Polchinski: String Theory (Cambridge University Press, Vol. I, II, Cambridge 1998)Google Scholar
  6. 6.
    E. Corbelli, Paolo Salucci: accepted by Mon. Not. R. Astron. Soc., astro-ph/9909252;A. Borriello, P. Salucci: astro-ph/0001082Google Scholar
  7. 7.
    S. van Albada, R. Sancisi: Phil. Trans. R. Soc. Lond., A320, 447 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    N. Bahcall, J.P. Ostriker, S. Perlmutter, P.J. Steinhardt: Science 284 1481 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    G.V. Kraniotis, S.B. Whitehouse: astro-ph/0002391 S.B. Whitehouse, G.V. Kraniotis: ‘A Possible Explanation of Galactic Velocity Rotation Curves in Terms of a Cosmological Constant’, astro-ph/9911485Google Scholar
  10. 10.
    S.J. Perlmutter et al.: Astrophys. Journ. 517, 565 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    H.C. Ohanian, R. Ruffini: Gravitation and Spacetime (W.W. Norton &; Company, New York 1994)Google Scholar
  12. 12.
    E.W. Kolb, M.S. Turner: The Early Universe (Frontiers in Physics v. 69, Addison-Wesley, 1990)Google Scholar
  13. 13.
    P. Salucci: SISSA-ISAS-Trieste, private communication (2000) K.G. Begeman: Astron. Astrophys. 223, 47 (1989)Google Scholar
  14. 14.
    A. Eddington: Mathematical Theory of Relativity, (Cambridge University Press, Cambridge, 1965)Google Scholar
  15. 15.
    P.A.M. Dirac: Proc. Roy. Soc. A 165, 198 (1939)Google Scholar
  16. 16.
    P. Dirac: Proc. R. Soc. Lond. A 338, 439 (1974)ADSCrossRefGoogle Scholar
  17. 17.
    P. Dirac: Proc. R. Soc. Lond. A 365, 19 (1978)MathSciNetADSGoogle Scholar
  18. 18.
    Ya.B. Zel’dovich: Usp. Fiz. Nauk 95, 209 (1968)Google Scholar
  19. 19.
    R. Matthews: Astronomy & Geophysics 33(6), 19 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Georgios V. Kraniotis
    • 1
  • Steven B. Whitehouse
    • 1
  1. 1.Centre for Particle PhysicsRoyal Holloway University of LondonEgham SurreyUK

Personalised recommendations