Accurate Dark Matter Theory and Exact Solutions

  • Mikhail Ja. Ivanov
Conference paper

Abstract

The paper presents accurate dark matter theory and some exact solutions of initial nonlinear equation systems of gaseous electromagnetic and gravitational medium. This phenome-nological theory bases on the Einstein’s recommendation and the linear and nonlinear extended Maxwell theory for compressible medium case. The main peculiarity of the extended linear simulation is a description of propagation of all medium parameters perturbances (pressure, velocity, potential and solenoidal parts of force vector fields and oth.) at the same signal velocity. Based on the analogy with classical hydrodynamic theory the full nonlinear conservation laws systems are obtained for dark matter gaseous electromagnetic or gravitational medium. These systems allow to simulate the universe expansion, background radiation and repulsive forces in the universe. The typical exact solutions of nonlinear equations are shown.

Keywords

Anisotropy Soliton Dium Rium Acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Gamov: Mat.-Fis. Medd, 27,10,1-4 (1953)Google Scholar
  2. 2.
    G.F. Smoot, M.V. Gorenstein, RA Muller:.Phys. Rev. Lett. 39, 14, 898-901 (1977)CrossRefGoogle Scholar
  3. 3.
    I.L. Rozental: Usp. Phys. Nauk, 167, 8,801–810 (1997, in Russian)CrossRefGoogle Scholar
  4. 4.
    A repulsive force in the universe. Physics News Update, 361, 1 (1998)Google Scholar
  5. 5.
    C.J Hogan., R.P. Kirshner., N.B. Suntzeff: Scientific American, 280, 1, 46–51 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    L.M. Krauss: Scientific American, 280, 1, 53–59 (1999)CrossRefGoogle Scholar
  7. 7.
    M.A. Bucher: Scientific American, 280, 1, 63–69 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Einstein: Proc. of Sci. papers, vol. IV. 9–13, (ML, Nauka, 1967, in Russian)Google Scholar
  9. 9.
    J.C. Maxwell: Treatise on Electricity and Magnetism (N.Y., Dover, 1954)Google Scholar
  10. 10.
    L.G. Loitchansky: Mechanics of fluid and gas. (M, Nauka, 1970, in Russian)Google Scholar
  11. 11.
    L.D. Landau, E.M. Lifshiz: Hydrodynamics. (M., Nauka, 1988, in Russian)Google Scholar
  12. 12.
    A.B. Vatagin, G.A. Liubimov, S.A. Rediger: Magneto-hydrodynamics flows in channels. (M., Nauka, 1970, in Russian)Google Scholar
  13. 13.
    M.Ja. Ivanov: Phys. Misl of Russia, 1, 1–14 (1998, in Russian)Google Scholar
  14. 14.
    W. Panofsky, M. Phillips: Classical Electricity and Magnetism. (Addison-Wesley, 1960)Google Scholar
  15. 15.
    M.Ja. Ivanov: Rus. Acad. of Sci., Math. Modeling, 10, 7, 3–20 (1998, in Russian)MATHGoogle Scholar
  16. 16.
    N.G. Basov: Journal of Exp. and Theor. Physics, 50, 1, 23–34 (1966, in Russian)Google Scholar
  17. 17.
    RY. Chiao, A.E. Kozhekin, G. Kurizki: Phys. Rev. Lett. 77, 1254 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    A.N. Oraevsky: Usp. Phys. Nauk, 168, 12, 1311–1321 (1998, in Russian)CrossRefGoogle Scholar
  19. 19.
    M.Ja. Ivanov: Plasma Phys., 8, 3, 607–612 (1982, in Russian)Google Scholar
  20. 20.
    M.Ja. Ivanov: J. Techn. Phys., 53, 2, 387–390 (1983, in Russian)Google Scholar
  21. 21.
    M.Ja. Ivanov, L.V. Terentieva: Appl. Math. and Mech., 63, 2, 258–266 (1999, in Russian)MathSciNetMATHGoogle Scholar
  22. 22.
    M.Ja. Ivanov: The «hyperbolic» argument functions in acoustics and electrodynamics. CIAM Preprint N 31, 40 p. (1999, in Russian)Google Scholar
  23. 23.
    M.Ja. Ivanov: On the linear and nonlinear mathematical models of gaseous medium dynamics with internal force fields. CIAM Preprint N 32, 32 p. (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Mikhail Ja. Ivanov
    • 1
  1. 1.Central Institute of Aviation MotorsMoscowRussia

Personalised recommendations