Control of Insects in Post-Harvest: High Temperature and Inert Atmospheres

  • Francis Fleurat-Lessard
  • Jean-Marc Le Torc’h


The methods used in the physical control of stored-product insects are drawn from several different sources. They have been adapted to the many different pest problems that arise during storage, transportation, and processing of cereals and their processed products. Food manufacturers want to be sure that their product will remain free of infestation throughout the distribution and retail system before being consumed. Among the physical methods of control, hermetic packaging with modified atmospheres is one way to insure pest-free delivery of the product. However, this technique is too costly to be used for primary products such as; cereals, dried fruits and dried plants. An alternative to chemical control methods for these products is extreme temperatures, the physical control method of choice (Fleurat-Lessard 1987). In certain situations, mechanical control methods are used to disinfest flour and semolina through impact devices (see Fields et al., Chap. 17). Physical control in stored products integrates many diverse methods, and it requires an in-depth knowledge of their various characteristics to be able to use them effectively in commercial operations. The operations concerned range from the initial storage of a raw product to the delivery of a finished product free of infestation.


Methyl Bromide Water Mist Flour Mill Pneumatic Conveyance Residual Insecticide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler C., (1994a). Carbon dioxide — more rapidly impairing the glycolytic energy production than nitrogen? pp. 7–10 in E. Highley, E.J. Wright, H.J. Banks and B.R. Champ (eds.) Stored Product Protection, CAB International, Wallingford, (UK), 1274 p.Google Scholar
  2. Annis P.C., (1986). Towards rational controlled atmosphere dosage schedules : a review of current knowledge, pp. 128–148 in E. Donahaye and S. Navarro (eds.) Proc. 4th Int. Working Conf. Stored Product Protection, Tel Aviv, 668 p.Google Scholar
  3. Armstrong J.W., Hansen J.D., Hu B.K.S., Brown S., (1989). High-temperature forced-air quarantine treatment for papayas infested with Tephritid fruit flies. J. Econ. Entomol. 82:1667–1674.Google Scholar
  4. Bailey S.W., Banks H.J., (1980). A review of recent studies of the effects of controlled atmospheres on stored product pests, pp. 101–118 in J. Shejbal (ed.) Controlled Atmosphere Storage of Grains, Elsevier, Amsterdam, 608 p.CrossRefGoogle Scholar
  5. Baker A.C., (1939). The bans for treatment of products where fruit flies are involved as a condition for entry into the United States. Washington D.C., USDA Circular No. 551, 7 p.Google Scholar
  6. Banks H.J., Annis P.C., (1990). Comparative advantages of high CO2 and low O2 types of controlled atmospheres, pp. 94–122 in M. Calderon and R. Barkai-Golan (eds.) Food preservation by modified atmospheres, CRC Press, Boca Raton, 402 p.Google Scholar
  7. Becker H.A., Sallans H.R., (1960). Drying wheat in a spouted bed. Chem. Eng. Sci. 13:97–112.Google Scholar
  8. Botteril J.S.M., (1975). Fluid-bed heat transfer. Academic Press, London, 230 p.Google Scholar
  9. Brown G.E., Farkas D.F., de Marchena E.S., (1972). Centrifugal fluidized bed — blanches, dries, and puffs piece-form foods. Food Technol. 26:23–30.Google Scholar
  10. Cahagnier B., Poisson J., (1973). La microflore des grains de maïs humide. Composition et évolution en fonction de divers modes de stockage. Rev. Mycol. 38:23–43.Google Scholar
  11. Calderon M., Navarro S., (1980). Synergistic effect of CO2 and OZ mixtures on two stored grain pests, pp. 79–84 in J. Shejbal (ed.) Controlled Atmosphere Storage of Grains, Elsevier, Amsterdam, 650 p.CrossRefGoogle Scholar
  12. Chapman R.N., (1921). Insect infesting stored food products. Minn. Agric. Expt. Sta. Bull. 198:1–76.Google Scholar
  13. Chauvin G., Vannier G., (1991). La résistance au froid et à la chaleur : deux données fondamentales dans le contrôle des insectes des produits entreposés, pp.1157–1165 in F. Fleurat-Lessard and P. Ducom (eds.) Proc. 5th Int. Working Conf. Stored Product Protection, INRA, Bordeaux, 2066 p.Google Scholar
  14. Corcoran R.J., Heather N.W., Heard T.A., (1993). Vapour-heat treatment for zucchini infested with Bactrocera cucumis (Diptera : Tephritidae). J. Econ. Entomol. 86:66–69.PubMedGoogle Scholar
  15. Cossins A.R., Prosser C.L., (1978). Evolutionary adaptation of membranes to temperature. Proc. Natn. Acad. Sci. USA 75:2040–2043.CrossRefGoogle Scholar
  16. Cotton R.T., (1930). Carbon dioxide as an aid in the fumigation of certain highly adsorptive commodities. J. Econ. Entomol. 25:1088–1103.Google Scholar
  17. Cotton R.T., Frankenfeld J.C., Dean C.A., (1945). Controlling insects in flour mills. USDA circular No. 720, 75 p.Google Scholar
  18. Dean G.A., (1913). Further data on heat as a means of controlling mill insects. J. Econ. Entomol. 6:40–53.Google Scholar
  19. Dean G.A., Cotton R.T., Wagner G.B., (1936). Flour-mill insects and their control. Circular No. 390, USDA Washington D.C., 34 p.Google Scholar
  20. Dermott T., Evans D.E., (1978). An evaluation of fluidized-bed heating as a means of disinfesting wheat. J. Stored Prod. Res. 14:1–12.CrossRefGoogle Scholar
  21. Ebeling W., (1994). The thermal pest eradication system for structural pest-control. IPM practitioner 16:1–7.Google Scholar
  22. Evans D.E., Dermott T., (1981). Dosage-mortality relationships for Rhyzopertha dominica (F.) (Coleoptera : Bostrychidae) exposed to heat in a fluidized bed. J. Stored Prod. Res. 17:53–64.CrossRefGoogle Scholar
  23. Fields P.G., (1992). The control of stored-product insects and mites with extreme temperatures. J. Stored Prod. Res. 28:89–118.CrossRefGoogle Scholar
  24. Fleurat-Lessard F., (1980). Lutte physique par l’air chaud ou les hautes fréquences contre les insectes des grains et des produits céréaliers. Bull. Techn. Info. Minist. Agric. Paris, 349:345–352.Google Scholar
  25. Fleurat-Lessard F., (1987). Control of storage insects by physical means and modified environmental conditions: Feasability and applications, pp. 209–218 in T.J. Lawson (ed.), Stored Product Pest Control, BCPC monograph 37, Thornton Heath, 277 p.Google Scholar
  26. Fleurat-Lessard F. (1990). Effect of modified atmospheres on insects and mites infesting stored products, pp. 21–38 in M. Calderon and R. Barkai-Golan (eds.) Food preservation by modified atmospheres. CRC Press, Boca Raton, 402 p.Google Scholar
  27. Forbes C.F., Ebeling W., (1987). Update : use of heat for elimination of structural pests. IPM practitioner. 9:1–5.Google Scholar
  28. Fraenkel G.S., Hopf H.S., (1940). The physiological action of abnormally high temperatures on poikilothermic animals. 1- Temperature adaptation and the degree of saturation of the phosphatides. Biochem. J. 34:1085–1092.PubMedGoogle Scholar
  29. Goodvin W.H., (1922). Heat treatment of cereal insects. Ohio Agr. Stat. Bull. 354:1–18.Google Scholar
  30. Grossman E.F., (1931). Heat treatment for controlling the insect pests of stored corn. Fla. Agr. Expt. Sta. Bull. 239:3–24.Google Scholar
  31. Haliman G.J., Sharp J.L., (1990). Hot-water immersion quarantine treatment for carambolas infested with caribbean fruit fly (Diptera : Tephritidae). J. Econ. Entomol. 83:1471–1474.Google Scholar
  32. Heaps J.W., (1988). Turn on the heat to control insects. Dairy Food Sanit. 8:416–418.Google Scholar
  33. Heather N.W., (1994). Commodity disinfestation treatments with heat, pp. 1199–1200 in E. Highley, E.J. Wright, H.J. Banks, and B.R. Champ (eds.) Stored Product Protection CAB International, Wallingford, U.K., 1274 p.Google Scholar
  34. Hyde M.B., Baker A.A., Ross A.C., Lopez C.O., (1973). Airtight grain storage. Agricultural Services Bull. FAO Rome, 71 p.Google Scholar
  35. Jay E.G., (1980). Methods of applying carbon dioxide for insect control in stored grain, pp. 225–234 in J. Shejbal (ed.) Controlled Atmosphere Storage of Grains, Elsevier, Amsterdam, 608 p.CrossRefGoogle Scholar
  36. Jay E.G., D’Orazio R., (1984). Progress in the use of controlled atmosphere in actual field situations in the United States, pp. 3–13 in B.E. Ripp et al. (eds.) Controlled atmosphere and fumigation in grain storages. Elsevier, Amsterdam, 800 p.CrossRefGoogle Scholar
  37. Le Torc’h J.M., Fleurat-Lessard F., (1991). Effet des fortes pressions sur l’efficacité insecticide des atmosphères modifiées par CO2 contre Sitophilus granarius (L.) et S. oryzae (L.) (Coleoptera: Curculionidae), pp. 847–856 in F. Fleurat-Lessard and P. Ducom (eds) Proc. 5th Int. Working Conf. Stored Product Protection. INRA Bordeaux (France), 2066 p.Google Scholar
  38. Kirkpatrick R.L., (1975). Infrared radiation for control of lesser grain borers and rice weevils in bulk wheat. J. Kansas ent. Soc. 48:100–104.Google Scholar
  39. Miller P.L., (1966). The regulation of breathing in insects. Adv. Insect Physiol. 3:279–286.CrossRefGoogle Scholar
  40. Meeus P., (1998). Various methods to use heat for enhancing fumigation results. Proceedings of 7th Int. Workink Conf. On Stored-Product Prot., Beijing, Oct. 1998, Abstract p. 70.Google Scholar
  41. Miller W.R., Mc Donald RE., Sharp J.L., (1990). Condition of Florida carambolas after preliminary tests of forced warm air treatment and storage. Proc. Fla. State Hort. Soc. 103:238–241.Google Scholar
  42. Nagao R.T., Kimpel J.A., Key J.L., (1990). Molecular and cellular biology of the heat-shock response. Adv. Genet. 28:235–275.PubMedCrossRefGoogle Scholar
  43. Navarro S., (1978). The effects of low oxygen tensions on three stored-product insect pests. Phytoparasitica 6:51–58.CrossRefGoogle Scholar
  44. Oosthuizen M.J., (1935). The effect of high temperature on the confused flour beetle. Minn. Agr. Expt. Sta. Bull. 107:1–45.Google Scholar
  45. Paull R.E., Armstrong J.W., (1994). Insect Pests and Fresh Horticultural Products: Treatments and Responses. CABI, Wallingford, U.K., 360 pp.Google Scholar
  46. Pepper J.H., Strand A.L., (1935). Superheating as a control for cereal-mill insects. Bull. Mont. Agr. Expt Stat. 297:1–26.Google Scholar
  47. Petersen N.S., Mitchell H.K., (1985). Heat shock proteins, pp. 347–365 in G.A. Kerkut and L.I. Gilbert (eds.) Comparative Insect Physiology, Biochemistry and Pharmacology, Pergamon Press, New York.Google Scholar
  48. Prozell, S. and C. Reichmuth 1990. Response of the granary weevil Sitophilus granarius (L.) (Col.: Curculionidae) to controlled atmospheres under high pressure, vol. II, pp. 911–918. In F. Fleurat Lessard and P. Ducom (eds) Proc. 5th Int. Working Conf. Stored Product Protection. INRA Bordeaux (France) 2066 p.Google Scholar
  49. Reichmuth C., (1986). Low oxygen content to control stored product insects, pp. 194–207 in E. Donahaye and S. Navarro (eds.) Proc. 4th Int. Working Conf. Stored Product Protection, Tel Aviv, 668 p.Google Scholar
  50. Reichmuth C., Wohlgemuth R., (1994). Carbon dioxide under high pressure of 15 bar and 20 bar to control the eggs of the Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) as the most tolerant stage at 25°C, pp. 163–172 in E. Highley, E.J. Wright, H.J. Banks and B.R. Champ (eds.) Stored Product Protection, CAB International, Wallingford, Oxon, 1274 p.Google Scholar
  51. Sharp J.L., (1990). Effectiveness of conventional commodity treatments (heat, refrigeration, chemical, others) to satisfy quarantine regulations. Proc. Fla. State Hortic. Soc. 103:175–186.Google Scholar
  52. Shejbal J., (1980). Controlled atmosphere storage of grains, Elsevier, Amsterdam, 608 p.Google Scholar
  53. Shejbal J., Tonolo N., Careri G., (1973). Conservation of wheat in silos under nitrogen. Ann. Technol. Agric. 22:773–785.Google Scholar
  54. Sheppard K.O., (1992). Heat sterilisation (superheating) as a control for stored-grain pests in a food plant, pp. 194–200 in F.J. Baur (ed.) Insect management for food storage and processing, AACC, St Paul MN, 384 p.Google Scholar
  55. Sigaut E, (1980). Significance of underground storage in traditional systems of grain production, pp. 3–14 in J. Shejbal (ed.) Controlled atmosphere storage of grains, Elsevier, Amsterdam, 608 p.CrossRefGoogle Scholar
  56. Sugimoto T., Furazawa K., Mizobuchi M., (1983). The effectiveness of vapour heat treatment against the Oriental fruit fly, Dacus dorsalis Hendel in green peppers and fruit tolerance to treatment. Res. Bull. Plant. Prot. Serv. of Japan 19:81–88.Google Scholar
  57. Thorpe G.R., (1987). The thermodynamic performance of a continuous-flow fluidized bed grain disinfestor and drier. J. agric. Eng. Res. 37:27–41.Google Scholar
  58. Tranchino L., Agostinelli P., Costantini A., Shejbal J., (1980). The first Italian large scale facilities for the storage of cereal grain in nitrogen, pp. 445–459 in J. Shejbal (ed.) Controlled Atmosphere Storage of Grains, Elsevier, Amsterdam, 608 p.CrossRefGoogle Scholar
  59. Vannier G., (1987). Mesure de la thermotorpeur chez les insectes. Bull. Soc. Ecophysiol. 12:165–186.Google Scholar
  60. White N.D.G., Jayas D.S., (1993). Effectiveness of carbon dioxide in compressed gas or solid formulation for the control of insects and mites in stored wheat and barley. Phytoprotection 74:101–111.CrossRefGoogle Scholar
  61. White N.D.G., Jayas D.S., 1999. Controlled atmosphere use during the storage of grain. In Handbook of Postharvest Technology A. Chakraverty, A.S. Mujumidar, G.S.V. Raghavan and H.S. Ramaswamy, (eds), Marcel Dekker, New York, in press.Google Scholar
  62. Winterbottom D.C., (1922). Weevils in wheat and storage of grain in bags: a record of Australian experience during the war period (1915 to 1919). Austr. Govt. Printing. Adelaide, 122 p.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Francis Fleurat-Lessard
  • Jean-Marc Le Torc’h

There are no affiliations available

Personalised recommendations