Order-Parameter Functional Method

  • Alexandr I. Gusev
  • Andrej A. Rempel
  • Andreas J. Magerl
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 47)


It was shown in the previous chapter that the static concentration wave method [1], which is a version of the mean field approximation [2], is effective for describing such complex phenomenon as atomic ordering. Correlations arising as a result of ordering can be taken into account by the cluster variation method [3–9]. However, these methods cannot be used directly for the description of the equilibrium distribution of interstitial atoms and structural vacancies in strongly nonstoichiometric compounds for the following reasons. In the static concentration wave method, energy parameters expressing the free energy are Fourier components of interparticle interaction potentials, which cannot be determined in the framework of this method. In this connection, in order to determine interatomic interaction potentials, it was proposed [1] to use the pseudopotential method, which has been insufficiently developed with respect to transition-metal compounds. As for the cluster variation (CV) method, the correct qualitative and quantitative description of structural order—disorder phase transitions calls for the choice of a basis cluster figure whose minimum size is limited by the unit cell. In complex lattices with unit cells containing a few tens of atoms, the description of order—disorder transformations by such a large cluster encounters insurmountable computational difficulties. Moreover, for quantitative applications of the CV method it is necessary to have a large number of energy parameters.


Interstitial Atom Basis Cluster Cluster Energy Cluster Variation Method Nonstoichiometric Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Khachaturian: Theory of Structural Transformations in Solid ( John Wiley Sons, New York 1983 ) 574 pp.Google Scholar
  2. 2.
    M. A. Krivoglaz, A. A. Smirnov: The Theory of Order—Disorder in Alloys ( American Elsevier, New York 1964 ) 427 pp.Google Scholar
  3. 3.
    R. Kikuchi: Theory of cooperative phenomena, Phys. Rev. 81, 988 - 1003 (1951)CrossRefGoogle Scholar
  4. 4.
    M. Kurata, R. Kikuchi, T. Watari: Theory of cooperative phenomena. Detailed discussions of the cluster variation method, J. Chem. Phys. 21, 434 - 448 (1953)CrossRefGoogle Scholar
  5. 5.
    J. Hijmans, J de Boer: Approximation method for order—disorder problem, Physica 21, 471 - 516 (1955)CrossRefGoogle Scholar
  6. 6.
    R. Kikuchi, S. G. Brush: Improvement of the cluster-variation method, J. Chem. Phys. 47, 195 - 203 (1967)CrossRefGoogle Scholar
  7. 7.
    J. M. Sanchez, D. de Fontaine: The f.c.c. Ising model in the cluster variation approximation, Phys. Rev. B 17, 2926 - 2936 (1978)CrossRefGoogle Scholar
  8. 8.
    V. G. Vaks, V. I. Zinenko, V. E. Shneider: Microscopic theories of the order—disorder structural phase transitions in crystals, Uspekhi Fiz. Nauk 141, 629 - 673 (1983) (in Russian)CrossRefGoogle Scholar
  9. 9.
    N. S. Golosov: Cluster variation method in the theory of atomic ordering, Izv. Vyssh. Ucheb. Zaved. Fizika No 8, 64 - 82 (1976) (in Russian)Google Scholar
  10. 10.
    A. I. Gusev, A. A. Rempel: Order parameter functional method in the theory of atomic ordering, Phys. Stat. Sol. (b) 131, 43 - 51 (1985)CrossRefGoogle Scholar
  11. 11.
    AA. Gusev, A. A. Rempel: Thermodynamic model of atomic ordering. 1. Basic equations, Zh. Fiz. Khimii 60, 1349-1352 (1986) (in Russian). (Engl. transi.: Russ. J. Phys. Chem. 60, 808-810 (1986))Google Scholar
  12. 12.
    A. A. Rempel, A. I. Gusev: Thermodynamic model of atomic ordering. 2. The order-disorder structural phase transition in nonstoichiometric niobium carbide, Zh. Fiz. Khimii 60, 1353-1357 (1986) (in Russian). (Engl. transl.: Russ. J. Phys. Chem. 60, 810-813 (1986))Google Scholar
  13. 13.
    A. I. Gusev, A. A. Rempel: Calculating the energy parameters for CV and OPF methods, Phys. Stat. Sol. (b) 140, 335 - 346 (1987)CrossRefGoogle Scholar
  14. 14.
    A. I. Gusev, A. A. Rempél, V. N. Lipatnikov: Thermodynamic model of atomic ordering. 3. Calculation of cluster energies, Zh. Fiz. Khimii 61, 916-921 (1987) (in Russian). (Engl. transl.: Russ. J. Phys. Chem. 61, 476-479 (1987))Google Scholar
  15. 15.
    A. I. Gusev, A. A. Rempel: Structural Phase Transitions in Nonstoichiometric Compounds ( Nauka, Moscow 1988 ) 308 pp. (in Russian)Google Scholar
  16. 16.
    A. I. Gusev: Atomic ordering and the order parameter functional method, Philosoph. Mag. B 60, 307 - 324 (1989)CrossRefGoogle Scholar
  17. 17.
    A. I. Gusev: Physical Chemistry of Nonstoichiometric Refractory Compounds ( Nauka, Moscow 1991 ) 286 pp. (in Russian)Google Scholar
  18. 18.
    A. A. Rempel: Effects of Ordering in Nonstoichiometric Interstitial Compounds ( Nauka, Ekaterinburg 1992 ) 232 pp. (in Russian)Google Scholar
  19. 19.
    A. I. Gusev, A. A. Rempel: Phase diagrams of metal—carbon and metal—nitrogen systems and ordering in strongly nonstoichiometric carbides and nitrides, Phys. Stat. Sol. (a) 163, 273 - 304 (1997)CrossRefGoogle Scholar
  20. 20.
    L. D. Landau, E. M. Lifschitz: Statistical Physics. Course of Theoretical Physics 5 (Pergamon, Oxford 1980 ) 544 pp.Google Scholar
  21. 21.
    H. J. Goldschmidt: Interstitial Alloys ( Plenum Press, New York 1967 ) 820 pp.Google Scholar
  22. 22.
    L. Toth: Transition Metal Carbides and Nitrides ( Academic Press, New York and London 1971 ) 280 pp.Google Scholar
  23. 23.
    G. P. Shveikin, S. I. Alyamovskii, Yu. G. Zainulin, A. I. Gusev, V. A. Gubanov, E. Z. Kurmaev: Compounds of Variable Composition and Their Solid Solutions ( Ural Scientific Centre, Sverdlovsk 1984 ) 292 pp. (in Russian)Google Scholar
  24. 24.
    A. I. Gusev, A. A. Rempel: Thermodynamics of the Structural Vacancies in Nonstoichiometric Interstitial Phases ( Ural Scientific Centre, Sverdlovsk 1987 ) 114 pp. (in Russian)Google Scholar
  25. 25.
    A. S. Bolgar, A. G. Turchanin, V. V. Fesenko: Thermodynamic Properties of Carbides ( Naukova Dumka, Kiev 1973 ) 272 pp. (in Russian)Google Scholar
  26. 26.
    A. S. Bolgar, V. F. Litvinenko: Thermodynamic Properties of Nitrides ( Naukova Dumka, Kiev 1980 ) 282 pp. (in Russian)Google Scholar
  27. 27.
    V. N. Lipatnikov, A. I. Gusev: Ordering of Titanium and Vanadium Carbides ( Ural Division of the RAS, Ekaterinburg 2000 ) 265 pp. (in Russian)Google Scholar
  28. 28.
    H. J. Seifert, H. L. Lukas, G. Petzow: Thermodynamic optimization of the Ti—C system, J. Phase Equilibria 17, 24 - 35 (1996)CrossRefGoogle Scholar
  29. 29.
    G. L. Humphrey: The heat of combustion and formation of titanium nitride TiN and titanium carbide TiC, J. Amer. Ceram. Soc. 73, 2261 - 2263 (1951)Google Scholar
  30. 30.
    S. Fujishiro, N. A. Goksen: Thermodynamic properties of TiC at high temperatures, J. Phys. Chem. 65, 161 - 163 (1961)CrossRefGoogle Scholar
  31. 31.
    C. E. Lowell, W. S. Williams: High temperature calorimeter for the determination of heats of formation of refractory compounds, Rev. Sci. Instrum. 32, 1120 - 1123 (1961)CrossRefGoogle Scholar
  32. 32.
    M. P. Morozova, M. K. Khripun, S. M. Ariya: Enthalpy of formation of titanium carbides and oxycarbides, Zh. Obshchey Khimii 32, 2072 - 2076 (1962) (in Russian)Google Scholar
  33. 33.
    V. M. Maslov, A. S. Neganov, I. P. Borovinskaya, A. G. Merganov: Self-propagating high-temperature synthesis as a method for determination of the heat of formation of refractory compounds, Fizika Goreniya i Vzryva 14, 73 - 82 (1978) (in Russian)Google Scholar
  34. 34.
    R. Berkane: Thermodynamic study of chromium, titanium, zirconium and hafnium carbides by high temperature calorimetry numerical modeling of the phase diagrams, Ph.D. Thesis, Université de Nancy I, France (1989)Google Scholar
  35. 35.
    A. E. Vol, I. K. Kagan: Structure and Properties of Binary Metallic Systems 3 (Nauka, Moscow 1976 ) 816 pp. (in Russian)Google Scholar
  36. 36.
    A. I. Gusev: Thermodynamic conditions for the congruent vaporization of unordered nonstoichiometric compounds, Doklady Akad. Nauk SSSR 311, 631-635 (1990) (in Russian). (Engl. transl.: Doklady Phys. Chem. 311, 264-268 (1990))Google Scholar
  37. 37.
    AA. Gusev: Thermodynamics of the congruent vaporization of nonstoichiometric refractory compounds, Teplofiz. Vysokikh Temp. 29, 695-701 (1991) (in Russian). (Engl. transl.: High temperature 29, 541-546 (1991))Google Scholar
  38. 38.
    A. I. Gusev: Phase diagrams for ordering systems in order-parameter functional method, Fiz. Tverd. Tela 32, 2752-2760 (1990) (in Russian). (Engl. transi.: Sov. Physics — Solid State 32, 1595-1599 (1990))Google Scholar
  39. 39.
    A. I. Gusev, A. A. Rempel: Thermodynamic model of atomic ordering. Phase diagrams of ordered systems, Zh. Fiz. Khimii 65, 625-633 (1991) (in Russian). (Engl. transl.: Russ. J. Phys. Chem. 65, 330-334 (1991))Google Scholar
  40. 40.
    A. A. Rempel, A. I. Gusev: Short-range order in ordered alloys and interstitial phases, Fiz. Tverd. Tela 32, 16-24 (1990) (in Russian). (Engl. transl.: Sov. Physics - Solid State 32, 8-13 (1990))Google Scholar
  41. 41.
    A. A. Rempel, A. I. Gusev: Short-range order in superstructures, Phys. Stat. Sol. (b) 160, 389 - 402 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Alexandr I. Gusev
    • 1
  • Andrej A. Rempel
    • 1
  • Andreas J. Magerl
    • 2
  1. 1.Ural Division of the Russian Academy of SciencesInstitute of Solid State ChemistryEkaterinburgRussia
  2. 2.Lehrstuhl für Kristallographie und StrukturphysikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations