Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 47))

  • 553 Accesses

Abstract

Currently there is no such solid-state theory which would allow the prediction of all properties of a substance from its chemical composition. All phase transformation theories designed for the phase description center on the thermodynamic potential and vary in the form of writing this potential in terms of parameters of the theory. Clearly, the extent to which any such theory approaches ideality is determined by the minimum number of phenomenological parameters needed to describe all interparticle interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Ehrenfest: Phasenumwandlungen im üblichen und erweiterten Sinn, klassifiziert nach den entsprechenden Singularitäten des thermodynamischen Potenziales, Commun. Kamerlingh Onnes Lab. Univ. Leiden. Suppl. B 20, 628–632 (1933);

    Google Scholar 

  2. P. Ehrenfest: Phasenumwandlungen im üblichen und erweiterten Sinn, klassifiziert nach den entsprechenden Singularitäten des thermodynamischen Potenziales, Commun. Kamerlingh Onnes Lab. Proc. Amsterdam Acad. 36, 153–157 (1933)

    CAS  Google Scholar 

  3. A. B. Pippard: The Elements of Classical Thermodynamics ( Cambridge University Press, Cambridge 1964 ) 264 pp.

    Google Scholar 

  4. L. D. Landau: Theory of phase transitions, in Collected Papers 1 ( Nauka, Moscow 1969 ) pp. 234–261 (in Russian)

    Google Scholar 

  5. E. M. Lifschitz: Theory of second kind phase transitions, ZhETF 11, 255–268 (1941) (in Russian).

    Google Scholar 

  6. L. D. Landau, E. M. Lifschitz: Statistical Physics. Course of Theoretical Physics 5 (Pergamon, Oxford 1980 ) 544 pp.

    Google Scholar 

  7. A. P. Levanyuk: Theory of light scattering near phase transition points, ZhETF 36, 810–817 (1959) (in Russian)

    CAS  Google Scholar 

  8. V. L. Ginzburg: Some notes on phase transitions of second kind and on microscopic theory of ferroelectric, Fiz. Tverd. Tela 2, 2031–2043 (1960) (in Russian)

    CAS  Google Scholar 

  9. I. E. Dzyaloshinskii: Thermodynamic theory of weak ferromagnetism of antiferromagnets, ZhETF 32, 1547–1562 (1957) (in Russian)

    Google Scholar 

  10. I. E. Dzyaloshinskii, V. I. Manko: Non-linear effects in antiferromagnets, ZhETF 46, 1352–1359 (1964) (in Russian)

    CAS  Google Scholar 

  11. I. E. Dzyaloshinskii: Theory of helicoidal structures of antiferromagnets, ZhETF 46, 1420–1438 (1964) (in Russian)

    CAS  Google Scholar 

  12. V. L. Indenbom: Thermodynamic theory of ferroelectricity, Izv. AN SSSR. Seriya Fizicheskaya 24, 1180–1183 (1960) (in Russian)

    Google Scholar 

  13. V. L. Indenbom: Phase transitions without change of number of atoms in unit cell of a crystal, Kristallografiya 5, 115–125 (1960) (in Russian)

    CAS  Google Scholar 

  14. I. L. Birman: Simplified theory of symmetry change in second-order phase transitions applications to V3Si, Phys. Rev. Lett. 17, 1216–1219 (1966)

    Article  CAS  Google Scholar 

  15. Yu. M. Gufan: Structural Phase Transitions ( Nauka, Moscow 1982 ) 304 pp. (in Russian)

    Google Scholar 

  16. Yu. A. Izyumov, V. N. Syromyatnikov: Phase Transitions and Symmetry of Crystals ( Nauka, Moscow 1984 ) 248 pp. (in Russian)

    Google Scholar 

  17. E. Ising: Beitrag zur Theorie des Ferromagnetismus, Z. Phys. 31, 253–258 (1925)

    Article  CAS  Google Scholar 

  18. W. Gorsky: Röntgenographische Untersuchung von Umwandlungen in der Legierung CuAu, Z. Phys. 50, 64–81 (1928)

    Article  Google Scholar 

  19. W. L. Bragg, E. J. Williams: The effect of thermal agitation on atomic arrangement in alloys, Proc. Roy. Soc. London A 145, 699–730 (1934)

    Article  CAS  Google Scholar 

  20. E. J. Williams: The effect of thermal agitation on atomic arrangement in alloys-111, Proc. Roy. Soc. London A 152, 231–252 (1935)

    Article  CAS  Google Scholar 

  21. M. A. Krivoglaz, A. A. Smirnov: The Theory of Order-Disorder in Alloys ( American Elsevier, New York 1964 ) 427 pp.

    Google Scholar 

  22. A. G. Khachaturian: Theory of Structural Transformations in Solids ( John Wiley & Sons, New York 1983 ) 574 pp.

    Google Scholar 

  23. W. Ludwig, C. Falter: Symmetries in Physics ( Springer-Verlag, Berlin — Heidelberg 1988 ) 461 pp.

    Book  Google Scholar 

  24. R. H. Fowler, E. A. Guggenheim: Statistical Thermodynamics ( Cambridge University Press, Cam-bridge 1939 ) 480 pp.

    Google Scholar 

  25. H. A. Bethe: Statistical theory of superlattices, Proc. Roy. Soc. London A 150, 552–575 (1935)

    Article  CAS  Google Scholar 

  26. R. Kikuchi: Theory of cooperative phenomena, Phys. Rev. 81, 988–1003 (1951)

    Article  Google Scholar 

  27. M. Kurata, R. Kikuchi, T. Watari: Theory of cooperative phenomena. Detailed discussions of the cluster variation method, J. Chem. Phys. 21, 434–448 (1953)

    Article  CAS  Google Scholar 

  28. V. G. Vaks, V. I. Zinenko, V. E. Shneider: Microscopic theories of the order-disorder structural phase transitions in crystals, Uspekhi Fiz. Nauk 141, 629–673 (1983) (in Russian)

    Article  CAS  Google Scholar 

  29. N. S. Golosov: Cluster variation method in the theory of atomic ordering, Izv. Vyssh. Ucheb. Zaved. Fizika No 8, 64–82 (1976) (in Russian)

    Google Scholar 

  30. J. Hijmans, J. de Boer: Approximation method for order-disorder problem, Physica 21, 471–516 (1955)

    Article  CAS  Google Scholar 

  31. A. A. Rempel, A. I. Gusev: Relation between short-range and long-range order in solid solutions with b.c.c. and f.c.c. structures, Phys. Stat. Sol. (b) 130, 413–420 (1985)

    Article  CAS  Google Scholar 

  32. A. A. Rempel, A. I. Gusev: The relationship between short-range and long-range order in ordered alloys, Fiz. Metall. Metalloved. 60, 847–854 (1985) (in Russian).

    CAS  Google Scholar 

  33. A. A. Rempel, A. I. Gusev: The relationship between short-range and long-range order in ordered alloys, Engl. transl.: Phys. Met. Metallogr. 60, 11–17 (1985)

    Google Scholar 

  34. N. S. Golosov, V. N. Udodov: Many-cluster approximation in CV method, Izv. Vyssh. Ucheb. Zaved. Fizika No 12, 93–97 (1975) (in Russian)

    Google Scholar 

  35. N. S. Golosov, A. V. Ushakov: Model of alloy in statistical theory of ordering, Fiz. Tverd. Tela 18, 1262–1268 (1976) (in Russian)

    CAS  Google Scholar 

  36. J. M. Sanchez, D. de Fontaine: The f.c.c. Ising model in the cluster variation approximation, Phys. Rev. B 17, 2926–2936 (1978)

    Article  Google Scholar 

  37. A. Surda, I. Karasova: Cluster variation method for lattice gas model, Czechosl. J. Phys. B 33, 1289–1302 (1983)

    Google Scholar 

  38. R. Kikuchi, S. G. Brush: Improvement of the cluster-variation method, J. Chem. Phys. 47, 195–203 (1967)

    Article  CAS  Google Scholar 

  39. A. I. Gusev, A. A. Rempel: Order parameter functional method in the theory of atomic ordering, Phys. Stat. Sol. (b) 131, 43–51 (1985)

    Article  CAS  Google Scholar 

  40. A. I. Gusev, A. A. Rempel: Thermodynamic model of atomic ordering. 1. Basic equations, Zh. Fiz Khimii 60, 1349–1352 (1986)

    CAS  Google Scholar 

  41. A. I. Gusev, A. A. Rempel: Thermodynamic model of atomic ordering. 1. Basic equations, Engl. transl.: Russ. J. Phys. Chem. 60, 808–810 (1986)

    Google Scholar 

  42. A. A. Rempel, A. I. Gusev: Thermodynamic model of atomic ordering. 2. The order-disorder structural phase transition in nonstoichiometric niobium carbide, Zh. Fiz. Khimii 60, 1353–1357 (1986)

    CAS  Google Scholar 

  43. A. A. Rempel, A. I. Gusev: Thermodynamic model of atomic ordering. 2. The order-disorder structural phase transition in nonstoichiometric niobium carbide, Engl. transl.: Russ. J. Phys. Chem. 60, 810–813 (1986).

    Google Scholar 

  44. A. I. Gusev, A. A. Rempel: Calculating the energy parameters for CV and OPF methods, Phys. Stat. Sol. (b) 140, 335–346 (1987)

    Article  CAS  Google Scholar 

  45. A. I. Gusev, A. A. Rempel: Structural Phase Transitions in Nonstoichiometric Compounds ( Nauka, Moscow 1988 ) 308 pp. (in Russian)

    Google Scholar 

  46. A. I. Gusev: Atomic ordering and the order parameter functional method, Philosoph. Mag. B 60, 307–324 (1989)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gusev, A.I., Rempel, A.A., Magerl, A.J. (2001). Order—Disorder Phase Transformation Theories. In: Disorder and Order in Strongly Nonstoichiometric Compounds. Springer Series in Materials Science, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04582-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04582-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07524-7

  • Online ISBN: 978-3-662-04582-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics