Interrelation of Short- and Long-Range Orders

  • Alexandr I. Gusev
  • Andrej A. Rempel
  • Andreas J. Magerl
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 47)


Short- and long-range orders characterize various types of mutual arrangements of atoms in crystalline solids. Long-range order emerges from the interference of perturbation waves induced by interchangeable elements and covers the whole volume of the crystal. Short-range order characterizes the mutual distribution of atoms of different species depending on the atom at the lattice site chosen. Short-range order vanishes with distance from a chosen atom and normally it covers no more than a few lattice constants.


Entropy Carbide Pyramid CuAu FePd 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Rempel, A. I. Gusev: Short-range order in ordered alloys and interstitial phases, Fiz. Tverd. Tela 32, 16–24 (1990) (in Russian). (Engl. transl.: Sov. Physics — Solid State 32, 8–13 (1990)Google Scholar
  2. 2.
    A. A. Rempel, A. I. Gusev: Short-range order in superstructures, Phys. Stat. Sol. (b) 160, 389–402 (1990).Google Scholar
  3. 3.
    E. Ising: Beitrag zur Theorie des Ferromagnetismus, Z. Phys. 31, 253–258 (1925)CrossRefGoogle Scholar
  4. 4.
    H. A. Bethe: Statistical theory of superlattices, Proc. Roy. Soc. London A 150, 552–575 (1935)CrossRefGoogle Scholar
  5. 5.
    F. C. Nix, W. Shockley: Order-disorder transformations in alloys, Rev. Modern Phys. 10, 1–71 (1938)CrossRefGoogle Scholar
  6. 6.
    R. Kikuchi: Theory of cooperative phenomena, Phys. Rev. 81, 988–1003 (1951)CrossRefGoogle Scholar
  7. 7.
    M. Kurata, R. Kikuchi, T. Watari: Theory of cooperative phenomena. Detailed discussions of the cluster variation method, J. Chem. Phys. 21, 434–448 (1953)CrossRefGoogle Scholar
  8. 8.
    J. Hijmans, J. de Boer: Approximation method for order—disorder problem, Physica 21, 471–516 (1955)CrossRefGoogle Scholar
  9. 9.
    R. Kikuchi, S. G. Brush: Improvement of the cluster-variation method, J. Chem. Phys. 47, 195–203 (1967)CrossRefGoogle Scholar
  10. 10.
    R. Kikuchi: The cluster variation method, J. Physique Colloq. 38, C7–307—C7–313 (1977)Google Scholar
  11. 11.
    E. A. Guggenheim: Statistical mechanics of regular solutions, Proc. Roy. Soc. London A 148, 304–312 (1935)CrossRefGoogle Scholar
  12. 12.
    R. Kikuchi, H. Sato: Characteristics of superlattice formation in alloys of face centred cubic structure, Acta Met. 22, 1099–1112 (1974)CrossRefGoogle Scholar
  13. 13.
    W. Gorsky: Röntgenographische Untersuchung von Umwandlungen in der Legierung CuAu, Z. Phys. 50, 64–81 (1928)CrossRefGoogle Scholar
  14. 14.
    W. L. Bragg, E. J. Williams: The effect of thermal agitation on atomic arrangement in alloys, Proc. Roy. Soc. London A 145, 699–730 (1934)CrossRefGoogle Scholar
  15. 15.
    A. G. Khachaturian: Theory of Structural Transformations in Solids ( John Wiley and Sons, New York 1983 ) 574 pp.Google Scholar
  16. 16.
    A. A. Rempel, A. I. Gusev: Relation between short-range and long-range order in solid solutions with b.c.c. and f.c.c. structures, Phys. Stat. Sol. (b) 130, 413–420 (1985)CrossRefGoogle Scholar
  17. 17.
    A. A. Rempel, A. I. Gusev: The relationship between short-range and long-range order in ordered alloys, Fiz. Metall. Metalloved. 60, 847–854 (1985) (in Russian). (Engl. transl.: Phys. Met. Metallogr. 60, 11–17 (1985))Google Scholar
  18. 18.
    A. A. Rempel, A. I. Gusev: Cluster-variation method of analysis of short-order and long-range order in ordered crystals, in Solid State Chemistry 9 P. V. Geld (Ed.) ( Urals Polytechnical Institute, Sverdlovsk 1986 ) pp. 117–124 (in Russian)Google Scholar
  19. 19.
    A. I. Gusev, A. A. Rempel: Structural Phase Transitions in Nonstoichiometric Compounds ( Nauka, Moscow 1988 ) 308 pp. (in Russian)Google Scholar
  20. 20.
    N. G. Parsonage, L. A. K. Staveley: Disorder in Crystals ( Clarendon Press, Oxford 1978 ) 926 pp.Google Scholar
  21. 21.
    L. D. Landau, E. M. Lifschitz: Statistical Physics. Course of Theoretical Physics 5 (Pergamon, Oxford 1980 ) 544 pp.Google Scholar
  22. 22.
    J. M. Cowley: An approximation theory of order in alloys, Phys. Rev. 77, 669–675 (1950)CrossRefGoogle Scholar
  23. 23.
    D. Ya. Khvatinskaya, I. Karimov, V. S. Presman: Short-range order of carbon atom positions in niobium carbide, Dokl_ Akad. Nauk Uzb. SSR No 1, 23–25 (1988) (in Russian)Google Scholar
  24. 24.
    A. I. Gusev, A. A. Rempel: Order parameter functional method in the theory of atomic ordering, Phys. Stat. Sol. (b) 131, 43–51 (1985)CrossRefGoogle Scholar
  25. 25.
    A. I. Gusev, A. A. Rempel: Calculating the energy parameters for CV and OPF methods, Phys. Stat. Sol. (b) 140, 335–346 (1987)CrossRefGoogle Scholar
  26. 26.
    A. I. Gusev: Atomic ordering and the order parameter functional method, Philosoph. Mag. B 60, 307–324 (1989)CrossRefGoogle Scholar
  27. 27.
    A. I. Gusev: Physical Chemistry of Nonstoichiometric Refractory Compounds ( Nauka, Moscow 1991 ) 286 pp. (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Alexandr I. Gusev
    • 1
  • Andrej A. Rempel
    • 1
  • Andreas J. Magerl
    • 2
  1. 1.Ural Division of the Russian Academy of SciencesInstitute of Solid State ChemistryEkaterinburgRussia
  2. 2.Lehrstuhl für Kristallographie und StrukturphysikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations