Skip to main content

Effects of Ordering on the Properties of Strongly Nonstoichiometric Compounds

  • Chapter
Disorder and Order in Strongly Nonstoichiometric Compounds

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 47))

  • 557 Accesses

Abstract

Atomic ordering of strongly nonstoichiometric interstitial compounds is a widely occurring but still understudied phenomenon (as compared to its counterpart in metallic alloys). This statement especially applies to the effect of ordering on properties of strongly nonstoichiometric compounds. Indeed, most work dealing with ordering of nonstoichiometric compounds is dedicated to the structure of ordered phases and their range in phase diagrams. Studies concerned with properties of nonstoichiometric compounds in both ordered and disordered states or properties vs. degree of ordering are dozens of times less in number. This is probably due to the fact that the effects of ordering and those associated with variation of the nonstoichiometric compound composition are very difficult to resolve. Experimental studies should be performed with the utmost care and accuracy. However, the effect of ordering on properties of nonstoichiometric compounds is comparable with the variation of properties in the homogeneity interval of a disordered compound where an ordered phase is formed. In other words, ordering and degree of nonstoichiometry have a comparable effect on properties of strongly nonstoichiometric compounds. Knowledge of the dependence of properties of strongly nonstoichiometric compounds MX,, on both the compound composition and the degree of order will open up new opportunities for producing materials with preset properties. By varying the structural state and the degree of order, it will be possible to realize fine adjustment of properties of strongly nonstoichiometric interstitial compounds without any impact on the chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. I. Gusev, A. A. Rempel: Structural Phase Transitions in Nonstoichiometric Compounds ( Nauka, Moscow 1988 ) 308 pp. (in Russian)

    Google Scholar 

  2. A. I. Gusev: Physical Chemistry of Nonstoichiometric Refractory Compounds ( Nauka, Moscow 1991 ) 286 pp. (in Russian)

    Google Scholar 

  3. A. A. Rempel: Effects of Ordering in Nonstoichiometric Interstitial Compounds ( Nauka, Ekaterinburg 1992 ) 232 pp. (in Russian)

    Google Scholar 

  4. A. A. Rempel: Atomic and vacancy ordering in nonstoichiometric carbides, Uspekhi Fiz. Nauk 166, 33–62 (1996) (in Russian). (Engl. transi.: Physics — Uspekhi 39, 31–56 (1996))

    Google Scholar 

  5. A. I. Gusev, A. A. Rempel, G. P. Shveikin: Structural stability and the boundaries of a homogeneity region of nonstoichiometric carbides, Doklady Akademii Nauk SSSR 298, 890–894 (1988) (in Russian). (Engl. transl.: DokladyPhys. Chem. 298, 121–125 (1988))

    Google Scholar 

  6. A. I. Gusev: Structural stability boundaries for nonstoichiometric compounds, Phys. Stat. Sol. (a) 111, 443–450 (1989)

    Article  CAS  Google Scholar 

  7. A. I. Gusev, A. A. Rempel: The boundaries of the structural stability of nonstoichiometric carbides, Zh. Neorgan. Khimii 34, 556–561 (1989) (in Russian). (Engl. transl.: Russ. J. Inorg. Chem. 34, 309–312 (1989))

    Google Scholar 

  8. V. N. Lipatnikov, A. A. Rempel, A. I. Gusev: Effect of nonstoichiometry and ordering on the basal structural parameters of the monocarbides of niobium and tantalum, Izv. AN SSSR. Neorgan. Materialy 26, 2522–2526 (1990) (in Russian). (Engl. transl.: Inorganic Materials 26, 2171–2175 (1990))

    Google Scholar 

  9. A. I. Gusev, A. A. Rempel, V. N. Lipatnikov: Incommensurate ordered phase in nonstoichiometric tantalum carbide, J. Phys.: Condens. Matter 8, 8277–8293 (1996)

    Article  CAS  Google Scholar 

  10. V. N. Lipatnikov, A. I. Gusev, P. Ettmayer, W. Lengauer: Phase transformation in nonstoichiometric vanadium carbide, J. Phys.: Condens. Matter 11, 163–184 (1999)

    Article  CAS  Google Scholar 

  11. L. V. Zueva, A. I. Gusev: Effect of nonstoichiometry and ordering on the period of the basis structure of cubic titanium carbide, Fiz. Tverd. Tela 41, 1134–1141 (1999) (in Russian). (Engl. transi.: Physics of the Solid State 41, 1032–1038 (1999)

    CAS  Google Scholar 

  12. E. K. Storms, R. I. McNeal: The vanadium—vanadium carbide system, J. Phys. Chem. 66, 1402–1408 (1962)

    Article  Google Scholar 

  13. R. Lorenzelli, I. de Dieuleveult: Existence d’une surstructure dans le carbure de thorium sous-stoechiometrique: ThCo.76, J. Nucl. Mater. 29, 349–353 (1969)

    Article  CAS  Google Scholar 

  14. T. Satow: Electrical resistivity, magnetic susceptibility, and thermal expansion of thorium monocarbide, J. Nucl. Mater. 21, 434–344 (1967)

    Google Scholar 

  15. A. A. Rempel, A. I. Gusev: Ordering in Nonstoichiometric Niobium Monocarbide ( Urals Scientific Centre, Sverdlovsk 1983 ) 68 pp. (in Russian)

    Google Scholar 

  16. A. I. Gusev, A. A. Rempel: Ordering in the carbon sublattice of nonstoichiometric niobium carbide, Fiz. Tverd. Tela 26, 3622–3627 (1984) (in Russian). (Engl. transi.: Sov. Physics — Solid State 26, 2178–2181 (1984))

    Google Scholar 

  17. A. A. Rempel, A. I. Gusev: Order—disorder phase transition in nonstoichiometric niobium carbide, Kristallografiya 30, 1112–1115 (1985) (in Russian). (Engl. transl.: Sov. Physics — Crystallography 30, 648–650 (1985))

    Google Scholar 

  18. A. I. Gusev, A. A. Rempel: Order—disorder phase transition channel in niobium carbide, Phys. Stat. Sol. (a) 93, 71–80 (1986)

    Article  CAS  Google Scholar 

  19. T. Athanassiadis, N. Lorenzelli, C. H. de Novion: Diffraction studies of the order-disorder transformation in V8C7, Ann. Chim. France 12, 129–142 (1987)

    CAS  Google Scholar 

  20. V. N. Lipatnikov, P. Ettmayer: Effect of vacancy ordering on structure and some properties of vanadium carbide, in Proc. of the 14th International Plansee Seminar 2, G. Kneringer, P. Rodhammer and P. Wilhartitz (Eds.), ( Plansee AG, Reutte 1997 ) pp. 485–497

    Google Scholar 

  21. V. N. Lipatnikov, W. Lengauer, P. Ettmayer, E. Keil, G. Groboth, E. Kny: Effects of vacancy ordering on structure and properties of vanadium carbide, J. Alloys Comp. 261, 192–197 (1997)

    Article  CAS  Google Scholar 

  22. G. Santoro: Variation of some properties of tantalum carbide with carbon content, Trans. Met. Soc. AIME 227, 1361–1368 (1963)

    CAS  Google Scholar 

  23. V. Moisy-Maurice: Structure atomique des carbures non-stoechiometriques de metaux de transition, Rapport CEA-R-5127 (Commissariat à l’Energie Atomique, Gif-sur-Yvette (France) 1981 ). 184 pp.

    Google Scholar 

  24. V. Moisy-Maurice, N. Lorenzelli, C. H. de Novion, P. Convert: High temperature neutron diffraction study of the order—disorder transition in TiCI x, Acta Metall. 30, 1769–1779 (1982)

    Article  CAS  Google Scholar 

  25. V. N. Lipatnikov, A. A. Rempel, AA. Gusev: Atomic ordering and hardness of nonstoichiometric titanium carbide, Int. J. Refract. Met. Hard Mater. 15, 61–64 (1997)

    Article  CAS  Google Scholar 

  26. A. N. Emel’yanov: Temperature conductivity of nonstoichiometric titanium carbide in the region of order—disorder phase transition, Teplofizika Vysok. Temp. 28, 269–278 (1990) (in Russian)

    Google Scholar 

  27. S. Tsurekawa, H. Yoshihaga: Identification of long-range ordered structure in TiCo 59 by transmission electron-microscopy, J. Japan. Inst. Metals 56, 133–141 (1992)

    CAS  Google Scholar 

  28. A. V. Karpov, V.P. Kobyakov, E.A. Chcrnomorskaya: Dilatation of nonstoichiometric titanium carbide in the region of order—disorder phase transition, Neorgan. Materialy 31, 655–659 (1995) (in Russian)

    Google Scholar 

  29. A. V. Karpov, V. P. Kobyakov: Order—disorder phase transition in TiCo.55, Fiz. Tverd. Tela 38, 1638–1640 (1996) (in Russian)

    CAS  Google Scholar 

  30. A. V. Karpov, V. P. Kobyakov: Order—disorder phase transition in TiCo.55 Teplofizika Vysok. Temp. 34 965–968 (1996) (in Russian). (Engl. transl.: High Temp. 34 950–953 (1996))

    Google Scholar 

  31. F. C. Nix, D. MacNair: A dilatometric study of the order—disorder transformation in copper-gold alloys, Phys. Rev. 60, 320–329 (1941)

    Article  Google Scholar 

  32. P. Wright, K. F. Goddard: Lattice parameter and resistivity study of order in the alloy CuAu3, Acta Metall. 7, 757–761 (1959)

    Article  CAS  Google Scholar 

  33. A. E. Vol, I. K. Kagan: Structure and Properties of Binary Metal Systems 3 (Nauka, Moscow 1976 ) pp. 87–89 (in Russian)

    Google Scholar 

  34. V. Moisy-Maurice, C. H. de Novion, A. N. Christensen, W. Just: Elastic diffuse neutron scattering study of the defect structure of TiC0.76 and NbC0.73, Solid State Commun. 39, 661–665 (1981)

    Article  CAS  Google Scholar 

  35. T. H. Metzger, J. Peisl, R. Kaufmann: X-ray determination of local atomic displacements around carbon vacancies in NbC1_, single crystals, J. Phys. F: Metal Phys. 13, 1103–1113 (1983)

    Article  CAS  Google Scholar 

  36. R. Kaufinann, O. Meyer: Ion channeling in NbCI_e: determination of local atomic displacements around carbon vacancies, Phys. Rev. B 28 6216–6226 (1983)

    Google Scholar 

  37. T. Priem, B. Beuneu, C. H. de Novion, J. Chevrier, F. Livet, A. Find, S. Lefevbre: Short-range order and static displacements in non-stoichiometric transition metal carbides and nitrides, Physica B 156–157, 47–49 (1989)

    Article  Google Scholar 

  38. T. Priem: Etude de l’ordre a courte distance dans les carbures et nitrures nonstoechiometriques de metaux de transition par diffusion diffuse de neutrons, Rapport CEA-R-5499 (Commissariat à l’Energie Atomique, Centre d’Etudes Nucléaires de Saclay, Gif-sur-Yvette (France) 1989 ) 162 pp.

    Google Scholar 

  39. T. E. Harris: Lower bound for the critical probability in a certain percolation process, Proc. Cambridge Philosoph. Soc. 56, 13–20 (1960)

    Google Scholar 

  40. M. E. Fisher: Critical probabilities for cluster size and percolation problems, J. Math. Phys. 2, 620–627 (1961)

    Article  Google Scholar 

  41. A. L. Efros: Physics and Geometry of Disorder ( Nauka, Moscow 1982 ) 175 pp. (in Russian)

    Google Scholar 

  42. H. Kesten: Percolation Theory for Mathematicians ( Birkhäuser, Boston-BaselStuttgart 1982 ) 423 pp.

    Google Scholar 

  43. A. I. Gusev: Atomic ordering and the order parameter functional method, Philosoph. Mag. B 60, 307–324 (1989)

    Article  CAS  Google Scholar 

  44. A. I. Gusev, A. A. Rempel: Phase diagrams of metal—carbon and metal—nitrogen systems and ordering in strongly nonstoichiometric carbides and nitrides, Phys. Stat. Sol. (a) 163, 273–304 (1997)

    Article  CAS  Google Scholar 

  45. A. A. Rempel’, A. I. Gusev: Nanostructure and atomic ordering in vanadium carbide, Pis’ma v ZhETF 69 436–442 (1999) (in Russian). (Engl. transi.: JETP Letters 69 472–478 (1999))

    Google Scholar 

  46. V. M. Cherkashenko, A. A. Rempel, A. I. Gusev: Influence of vacancy ordering on X-ray emission spectra of nonstoichiometric niobium carbides, Fiz. Tverd. Tela 27 1387–1390 (1985) (in Russian). (Engl. transi.: Soy. Physics — Solid State 27 838–840 (1985))

    Google Scholar 

  47. V. M. Cherkashenko, V. V. Shumilov, E. Z. Kurmaev, A. A. Rempel: The X-ray spectra of niobium and the electronic structure of ordered niobium carbides in the

    Google Scholar 

  48. nonstoichiometry range, Zh. Neorgan. Khimii 36 474–479 (1991) (in Russian). (Engl. transi.: Russ. J. Inorg. Chem. 36 265–268 (1991))

    Google Scholar 

  49. E. Z. Kurmaev, M. P. Butsman, V. A. Trofimova, V. A. Gubanov, A. L. Ivanovskii, Yu. G. Zainulin, G. P. Shveikin- Study of valent state of titanium atoms in nonstoichiometric carbides on X-ray emission spectra and on the data of MO LCAO calculation, Zh. Struct. Khimii 22, 172–174 (1981) (in Russian)

    CAS  Google Scholar 

  50. K. Schwarz, N. Rösch: Effects of carbon vacancies in NbC on superconductivity, J. Phys. C: Sol. State Phys. 9, L443 — L447 (1976)

    Article  Google Scholar 

  51. G. Reis, H. Winter: Electronic structure of vacancies in refractory compounds and its influence on T,, J. Phys. F: Metal Phys. 10, 1–7 (1980)

    Article  Google Scholar 

  52. H. Höchst, P. Steiner, S. Hüfner, C. Politis: XPS valence band spectra of NbCX, Z. Phys. 37, 27–31 (1980)

    Google Scholar 

  53. A. I. Gusev, A. A. Rempel: Superconductivity in disordered and ordered niobium carbide, Phys. Stat. Sol. (b) 151, 211–224 (1989)

    Article  CAS  Google Scholar 

  54. A. Z. Men’shikov, E. Z. Kurmaev: Influence of nearest environment of atoms on X-ray emission spectra, Fiz. Metall. Metalloved. 41, 748–756 (1976) (in Russian)

    Google Scholar 

  55. A. A. Rempel, A. I. Gusev: NMR spectra of 93Nb in ordered niobium carbide, Fiz. Tverd. Tela 25 3169–3171 (1983) (in Russian). (Engl. trans1.: Sov. Physics — Solid State 25 1827–1828 (1983))

    Google Scholar 

  56. A. A. Rempel, A. I. Gusev, M. Yu. Belyaev: 93Nb NMR study of an ordered and a disordered non-stoichiometric niobium carbide, J. Phys. C: Sol. State Phys. 20, 5655–5666 (1987)

    Article  CAS  Google Scholar 

  57. A. I. Gusev, A. A. Rempel: A study of the atomic ordering in the niobium carbide using the magnetic susceptibility method, Phys. Stat. Sol. (a) 84, 527–534 (1984)

    Article  CAS  Google Scholar 

  58. A. A. Rempel, L. B. Dubrovskaya, A. I. Gusev, G. P. Shveikin: Effect of ordering on the magnetic susceptibility of niobium carbide, Izv. AN SSSR. Neorgan. Materialy 21 596–599 (1985) (in Russian). (Engl. transi.: Inorganic Materials 21 514–518 (1985))

    Google Scholar 

  59. A. I. Gusev, A. A. Rempel: Anomalous changes in the magnetic susceptibility due to ordering of niobium carbide, Fiz. Tverd. Tela 27 1528–1530 (1985) (in Russian). (Engl. transl.: Sov. Physics — Solid State 27 920–921 (1985))

    Google Scholar 

  60. S. R. Barman, D. D. Sarma: Electronic structure of TiOX (0.8 x 1.3) with disordered and ordered vacancies, Phys. Rev. B 49, 16141–16148 (1994)

    Article  CAS  Google Scholar 

  61. S. Bartkowski, M. Neumann, E. Z. Kurmaev, V. V. Fedorenko, S. N. Shamin, V. M. Cherkashenko, S. N. Nemnonov, A. Winiarski, D. C. Rubie: Electronic structure of titanium monoxide, Phys. Rev. B 56, 10656–10667 (1997)

    Article  CAS  Google Scholar 

  62. G. Hörmandinger, J. Redinger, P. Weinberger, G. Hobiger, P. Herzig: The influence of vacancies on the electronic structure of TiO, Sol. State Commun. 68, 467–470 (1988)

    Article  Google Scholar 

  63. M. A. Blokhin, I. G. Shveitser: Handbook on X-ray Spectroscopy ( Nauka, Moscow 1982 ) 376 pp. (in Russian)

    Google Scholar 

  64. G. H. Schalder, A. M. Boring, P. Weinberger, A. Gonis: Electronic structure of stoichiometric and off-stoichiometric tantalum carbide, Phys. Rev. B 38, 9538–9544 (1988)

    Article  Google Scholar 

  65. L. Ramqvist, K. Hamrin, G. Johensson, U. Gelias, C. Nordling: VC, NbC, and TaC with varying carbon content studied by ESCA, J. Phys. Chem. Sol. 31, 2669–2672 (1970)

    Article  CAS  Google Scholar 

  66. H. Ihara, M. Hirabayashi, H. Nakagawa: Electronic band structures and X-ray photoelectron spectra of ZrC, HfC and TaC, Phys. Rev. B 14 1707–1714 (1976)

    Google Scholar 

  67. G. R. Gruzalski, D. M. Zenner: Defect states in substoichiometric tantalum carbide, Phys. Rev. B 34, 3841–3848 (1986)

    Article  CAS  Google Scholar 

  68. A. A. Rempel, A. K. Sinelnichenko: X-ray photoelectron spectra of nonstoichiometric tantalum carbide, Metallofizika 13, 61–70 (1991) (in Russian). (Engl. transi.: Phys. Metals 11, 352–364 (1992))

    Google Scholar 

  69. V. P. Zhukov, A. L. Ivanovskii, V. A. Gubanov, G. P. Shveikin, G Veber: Xa-cluster calculations of electronic structure of hafnium and tantalum carbides and nitrides, Zh. Neorgan. Khimii 25, 318–326 (1980) (in Russian)

    CAS  Google Scholar 

  70. J. P. Landesman, G. Treglia, P. Turchi, F. Ducastelle: Electronic structure and pairwise interactions in substoichiometric transition metal carbides and nitrides, J. de Physique 46, 1001–1015 (1985)

    Article  CAS  Google Scholar 

  71. P. Blaha, K. Schwarz, F. Kubel, K. Yvon: Chemical bonding in refractory metal compounds with 8, 9 and 10 valence electrons, J. Sol. State Chem. 20, 199–206 (1987)

    Article  Google Scholar 

  72. H. Ihara: Electronic Structures of the Transition Metal Carbides and Borides Studies by X-ray Photoelectron Spectroscopy and Band Calculation, Res. of Electrotechn. Lab. No. 775 (Electrotechnical Laboratory, Tokyo 1977 ) 127 pp.

    Google Scholar 

  73. V. I. Nefedov: X-ray Electron Spectroscopy of Chemical Compounds ( Khimiya, Moscow 1984 ) 256 pp. (in Russian)

    Google Scholar 

  74. E. Z. Kurmaev, V. M. Cherkashenko, A. A. Rempel, A. I. Gusev, A. Moewes, D. L. Ederer: Synchrotron X-ray emission spectroscopy of N3-spectra in tantalum and nonstoichiometric tantalum carbide, in Abstracts of 3rd Russian-German Seminar on Electron and X-ray Spectroscopy, Yekaterinburg, September 15–19, 1999 (Institute of Metal Physics, Yekaterinburg 1999 ) pp. 50–51

    Google Scholar 

  75. E. Browne, J. M. Dairiki, R. E. Doebler: Table of Isotopes, 7th edn. C. M. Lederer, V. S. Shirley (Eds.) (John Wiley and Sons, New York 1978 ) 1523 pp.

    Google Scholar 

  76. R. M. Nieminen, M. J. Manninen: Positrons in imperfect solids: theory, in Positron in Solids P.Hautojärvi (Ed.) (Springer, Berlin 1979 ) pp. 145–195

    Chapter  Google Scholar 

  77. A. A. Rempel, H.-E. Schaefer, M. Forster, A. I. Girka: Atomic defects in transition metal carbides and SiC studied by positron annihilation, in Covalent Ceramics II: Non-oxides, A. R. Barron, G. S. Fischman, M. A. Fury, A. F. Hepp (Eds.), USA Mater. Res. Soc. Symp. Proc. 327, Boston, Massachusetts, November 29 — December 2, 1993 ( Materials Research Society, Pittsburgh (Pennsylvania) 1994 ) pp. 301–304

    Google Scholar 

  78. M. J. Puska, M. Sob, G. Brauer, T. Kornonen: First-principles calculation of positron lifetimes and affinities in perfect and imperfect transition metal carbides and nitrides, Phys. Rev. B 49, 10947–10958 (1994)

    Article  CAS  Google Scholar 

  79. J. Störmer J, A. Goodyear, W. Anwand, G. Brauer, P. G. Coleman, W. Triftshäuser: Silicon carbide: a new positron moderator, J.Phys.: Condens. Matter 8, L89 — L94 (1996)

    Google Scholar 

  80. G. Brauer, W. Anwand, E.-M. Nicht, J. Kuriplach, M. Sob, N. Wagner, P. G. Coleman, M. J. Puska, T. Korhonen: Evaluation of some basic positron-related characteristics of SiC, Phys. Rev. B 54, 2512–2517 (1996)

    Article  CAS  Google Scholar 

  81. R. Würschum, A. Seeger: Diffusion—reaction model for the trapping of positrons in grain boundaries, Philosoph. Mag. 73, 1481–1501 (1996)

    Google Scholar 

  82. H.-E. Schaefer: Investigation of thermal equilibrium vacancies in metals by positron annihilation, Phys. Stat. Sol. (a) 102, 47–65 (1987)

    Article  CAS  Google Scholar 

  83. R. Würschum, W. Bauer, K. Maier, A. Seeger, H.-E. Schaefer: Positron lifetime in semiconductors, J. Phys.: Condens. Matter 1, A33 — A48 (1989)

    Article  Google Scholar 

  84. R. Würschum, H.-E. Schaefer: Interfacial free volumes and atomic diffusion in nanostructured solids, in Nanomaterials: Synthesis, Properties, and Applications A. S. Edelstein, R. C. Cammarata (Eds.) ( Institute of Physics, Bristol 1996 ) pp. 277–301

    Google Scholar 

  85. R. Würschum, K. Reimann, S. Gruß, A. Kübler, P. Scharwaechter, W. Frank, O.Kruse, H. D. Carstanjen, H.-E. Schaefer: Structure and diffusional properties of nano-crystalline Pd, Philosoph. Mag. B 17, 407–417 (1997)

    Article  Google Scholar 

  86. H.-E. Schaefer, R. Würschum, R. Schwarz, D. Slobodin, S. Wagner: Amorphous hydrogenated Si studied by positron lifetime spectroscopy, Appl. Phys. A 40, 145–149 (1986)

    Google Scholar 

  87. R. Würschum, P. Farber, R. Dittmar, P. Scharwaechter, W. Frank, H.-E. Schaefer: Thermal vacancy formation and self-diffusion in intermetallic Fe3Si nanocrystallites of nanocomposite alloys, Phys. Rev. Lett. 24, 4918–4921 (1997)

    Article  Google Scholar 

  88. H.-E. Schaefer, M. Forster: As-grown metal oxides and electron-irradiated Al2O3 studied by positron lifetime measurements, Mater. Sci. Engineer. A 109, 161–167 (1989)

    Article  Google Scholar 

  89. A. A. Rempel, M. Forster, H.-E. Schaefer: Positron lifetime in carbides with B1 structure, Doklady Akad. Nauk SSSR 326 91–97 (1992) (in Russian). (Engl. transl.: Sov. Physics Doklady 37 484–487 (1992))

    Google Scholar 

  90. A. A. Rempel, M. Forster, H.-E. Schaefer: Positron lifetime in non-stoichiometric carbides with a BI (NaC1) structure, J. Phys.: Condens. Matter 5, 261–266 (1993)

    Article  CAS  Google Scholar 

  91. A. A. Rempel, L. V. Zueva, V. N. Lipatnikov, H.-E. Schaefer: Positron lifetime in the atomic vacancies of nonstoichiometric titanium and vanadium carbides, Phys. Stat. Sol. (a) 169, R9 — R10 (1998)

    Article  CAS  Google Scholar 

  92. A. A. Rempel, A. P. Druzhkov, V. N. Lipatnikov, A. I. Gusev, S. M. Klotsman, G. P. Shveikin• Angular correlation of annihilation radiation in nonstoichiometric tantalum carbide, Doklady Akad. Nauk SSSR 300 92–95 (1988) (in Russian). (Engl. transl.: Soy. Physics Doklady33 357–359 (1988))

    Google Scholar 

  93. A. A. Rempel, A. P. Druzhkov, A. I. Gusev: Positron annihilation in tantalum and its carbide, Fiz. Metall. Metalloved. 68 371–279 (1989) (in Russian). (Engl. transl.: Phys. Met. Metallogr. 68 59–68 (1989))

    Google Scholar 

  94. A. A. Rempel, A. P. Druzhkov, A. I. Gusev: Angular correlation of annihilation radiation in transition metals and their carbides, Fiz. Tverd. Tela 32 1333–1338 (1990) (in Russian). (Engl. transl.: Sov. Physics — Solid State 32 779–782 (1990))

    Google Scholar 

  95. P. Kirkegaard, M. Eldrup, O. E. Mogensen, N. J. Pedersen: Program system for analysing positron lifetime spectra and angular correlation curves, Comp. Phys. Commun. 23, 307–335 (1981)

    Article  CAS  Google Scholar 

  96. M. J. Puska, M. Sob, G. Brauer, T. Korhonen: Positron annihilation characteristics in perfect and imperfect transition metal carbides and nitrides, J.Physique IV 5, C1–135—C1–142 (1995)

    Google Scholar 

  97. A. A. Rempel, A. I. Gusev, O. V. Makarova, S. Z. Nazarova: Physical and chemical properties of nanostructured vanadium carbide, Perspectiv. Materialy No. 6, 9–15 (1999) (in Russian)

    Google Scholar 

  98. G. Brauer, W. Anwand, E. M. Nicht, P. G. Coleman, A. P. Knights, H. Schut, G. Kögel, N. Wagner: Positron Studies of polycrystalline TiC, J. Phys.: Condens. Matter 7, 9091–9099 (1995)

    CAS  Google Scholar 

  99. A. Seeger, F. Banhart: On the systematics of positron lifetimes in metals, Phys. Stat. Sol. (a) 102, 171–179 (1987)

    Article  CAS  Google Scholar 

  100. W. Bauer, J. Briggmann, H.-D. Carstanjen, S. Connel, W. Decker, J. Diehl, K. Maier, J. Major, H.-E. Schaefer, A. Seeger, H. Stoll, E. Widmann. The stuttgart positron beam, its performance and recent experiments, Nuclear Instr. Methods in Phys. Res. B 50, 300–306 (1990)

    Google Scholar 

  101. A. A. Rempel, H.-E. Schaefer: Irradiation-induced atomic defects in SiC studied by positron annihilation, Apl. Phys. A 61, 51–53 (1995)

    Google Scholar 

  102. A. A. Rempel, R. Würschum, H.-E. Schaefer: Atomic defects in hexagonal tungsten carbide studied by positron annihilation, Phys. Rev. B 61, 5945–5948 (2000)

    Article  CAS  Google Scholar 

  103. F. Seitz, J. S. Koehler: Displacement of atoms during irradiation, in Solid State Physics. Advances in Research and Applications F. Seitz, D. Turnbull (Eds.) ( Academic Press, New York 1956 ) pp. 305–449

    Google Scholar 

  104. J. Morillo, C. H. de Novion, J. Dural: Neutron and electron radiation defects in titanium and tantalum monocarbides: an electrical resistivity study, Radiation Effects 55, 67–78 (1981)

    Article  CAS  Google Scholar 

  105. D. Gosset, J. Morillo, C. Allison, C. H. de Novion: Electron irradiation damage in stoichiometric and substoichiometric tantalum carbides TaCx. Part I. Threshold displacement energies, Radiation Effects and Defects in Solids 118, 207–224 (1991)

    Article  Google Scholar 

  106. M. E. Straumanis, H. W. Li: Gitterkonstanten, Ausdehnungskoeffizienten, Dichten, Fehlordnung and Aufbau der Phase Titan—Oxid, Z. Anorg. Allgem. Chem. 305, 143–147 (1960)

    Article  CAS  Google Scholar 

  107. S. Andersson, B. Collen, U. Kuylenstierna, A. Magneli: Phase analysis studies on the titanium—oxygen system, Acta Chem. Scand. 11, 1641–1647 (1957)

    Article  CAS  Google Scholar 

  108. R. L. Zafra, W. Joyner: Temperature effect on positron annihilation in condensed matter, Phys. Rev. 112, 19–29 (1958)

    Article  Google Scholar 

  109. K. Maier, H. Metz, D. Herlach, H.-E. Schaefer, A. Seeger: Formation and migration energies of monovacancies in tantalum, Phys. Rev. Lett. 39, 484–487 (1977)

    Article  CAS  Google Scholar 

  110. N. F. Miron, S. N. Maev: Positron spectroscopy of defects in vanadium, niobium and molibdenum after neutron irradiation, Fiz. Metall. Metalloved. 66, 1159–1162 (1988) (in Russian)

    CAS  Google Scholar 

  111. V. I. Goldanskii: Chemistry of the Positron and Positronium ( Nauka, Moscow 1968 ) 174 pp. (in Russian)

    Google Scholar 

  112. G. Dlubek, W. Rechner, O. Brummer: Contribution to the parametrization of the angular correlation curves of the 2y-positron annihilation radiation, Exper. Tekn. Phys. 25, 289–297 (1977)

    CAS  Google Scholar 

  113. D. J. Hudson: Lectures on Elementary Statistics and Probability (CERN, Geneva 1963) 101 pp.; D. J. Hudson: Statistics lectures II: Maximum Likelihood and Least Squares Theory ( CERN, Geneva 1964 ) pp. 103–211

    Google Scholar 

  114. U. A. Arifov (Ed.): Positron Diagnostics ( Fan, Tashkent 1978 ) 190 pp. (in Russian)

    Google Scholar 

  115. P. Marksteiner, P. Weinberger, A. Neckel, R. Zeller, P. H. Dederichs: Electronic structure of substoichiometric carbides and nitrides of titanium and vanadium, Phys. Rev. B 33, 812–822 (1986)

    Article  CAS  Google Scholar 

  116. P. Marksteiner, P. Weinberger, A. Neckel, R. Zeller, P. H. Dederichs: Electronic structure of substoichiometric carbides and nitrides of zirconium and niobium, Phys. Rev. B 33, 6709–6717 (1986)

    Article  CAS  Google Scholar 

  117. V. I. Trefilov, E. A. Zhurakovskii, V. V. Nemoshkalenko, Ya. V. Zaulichnyii, A. P. Shpak, B. P. Mamko, A. A. Lisenko: State of carbon atom in different crystal modification of free carbon and in refractory carbides, Metallofizika 10, 18–25 (1988) (in Russian)

    CAS  Google Scholar 

  118. V. S. Mikhalenkov: Diagnostics of vacancy clusters in metals by electron-positron annihilation method, Metallofizika 5, 44–60 (1983) (in Russian)

    CAS  Google Scholar 

  119. A. A. Rempel: Structural vacancy in nonstoichiometric carbides of IV and V groups transition metals, in Solid State Chemistry, G. P. Shveikin (Ed.) ( Ural Division of the Russian Academy of Sciences, Ekaterinburg 1997 ) pp. 57–69 (in Russian)

    Google Scholar 

  120. W. S. Williams: Scattering of electrons by vacancies in nonstoichiometric crystals of titanium carbide, Phys. Rev. A 135, 505–510 (1964)

    CAS  Google Scholar 

  121. Y. Ishizawa, S. Otani, H. Nozaki, T. Tanaka: Carbon—vacancy concentration dependencies of electrical properties of NbCr single crystal, J. Phys.: Condens. Matter 4, 8593–8598 (1992)

    Article  CAS  Google Scholar 

  122. V. N. Lipatnikov, A. I. Gusev: Dependence of the resistivity of nonstoichiometric titanium carbide TiCY on the density and distribution of carbon vacancies, Pis’ina v ZhETF 70, 284–289 (1999) (in Russian). (Engl. transl.: JETP Letters 70, 294–300 (1999))

    Google Scholar 

  123. L. Ramqvist: Variation of hardness, resistivity and lattice parameter with carbon content of group 5b metal carbides, Jernkontorets Annaler. 152, 467–475 (1968)

    Google Scholar 

  124. J. R. Cooper, R. L. Hansler: Variation of electrical resistivity of cubic tantalum carbide with composition, J. Chem. Phys. 39, 248–249 (1963)

    Article  CAS  Google Scholar 

  125. R. Steinitz, R. Resnick: Electrical and magnetic properties of compositions in the tantalum-carbon system, J. Appl. Phys. 37, 3463–3471 (1966)

    Article  CAS  Google Scholar 

  126. G. Santoro, R. T. Dolloff: Hall coefficient of tantalum carbide as a function of carbon content and temperature, J. Appl. Phys. 39, 2293–2296 (1968)

    Article  Google Scholar 

  127. L. B. Dubrovskaya, I. I. Matveenko, P. V. Geld: Influence of temperature and composition on electrical conductivity of /3- and y-phases of tantalum—carbon system, Fiz. Metall. Metalloved. 20, 243–250 (1965) (in Russian)

    CAS  Google Scholar 

  128. L. C. Dy, W. S. Williams: Resistivity, superconductivity and order—disorder transformations in transition metal carbides and hydrogen-doped carbides, J. Appl. Phys. 53, 8915–8927 (1982)

    Article  CAS  Google Scholar 

  129. S. Otani, T. Tanaka, Y. Ishizawa: Electrical resistivities in single crystals of TiCr and VCx, J. Mater. Sci. 21, 1011–1014 (1986)

    Article  CAS  Google Scholar 

  130. V. Christoph, J. Richter, W. Schiller: Influence of partial long-range and short-range orders on the electrical resistivity of substitutional alloys, Phys. Stat. Sol. (b) 100, 595–602 (1980)

    Article  CAS  Google Scholar 

  131. V. N. Lipatnikov, A. Kottar, L. V. Zueva, A. I. Gusev: Disorder—order phase transformations and electrical resistivity of a nonstoichiometric titanium carbide, Fiz. Tverd. Tela 40, 1332–1340 (1998) (in Russian). (Engl. transl.: Physics of the Solid State 40, 1211–1218 (1998))

    Google Scholar 

  132. V. A. Vlasov, I. A. Karimov, L. V. Kustova: Order—disorder phase transition in nonstoichiometric titanium carbide, Izv. AN SSSR. Neorgan. Materialy 22, 231–233 (1986) (in Russian)

    CAS  Google Scholar 

  133. V. N. Lipatnikov, A. I. Gusev: Effect of ordering on the structure and specific heat of nonstoichiometric titanium carbide, Pis’ma v ZhETF 69, 631–637 (1999) (in Russian). (Engl. transl.: JETP Letters 69, 669–675 (1999))

    Google Scholar 

  134. A. I. Gusev, A. A. Rempel: Superstructures of non-stoichiometric interstitial compounds and the distribution functions of interstitial atoms, Phys. Stat. Sol. (a) 135, 15–58 (1993)

    Article  CAS  Google Scholar 

  135. A. N. Emel’yanov: Features of order—disorder phase transition in nonstoichiometric carbides of transition metals, Fiz. Tverd. Tela 38, 3678–3682 (1996) (in Russian)

    Google Scholar 

  136. N. Lorenzelli, R. Caudron, J. P. Landesman, C. H. de Novion: Influence of the ordering of carbon vacancies on the electronic properties of TiCo.625, Solid State Commun. 59, 765–769 (1986)

    Google Scholar 

  137. N. Obata, N. Nakasawa: Superlattice formation in zirconium—carbon system, J. Nucl. Mater. 60, 39–42 (1976)

    Article  CAS  Google Scholar 

  138. L. W. Shacklette, W. S. Williams: Influence of order-disorder transformations on the electrical resistivity of vanadium carbide, Phys. Rev. B 7, 5041–5053 (1973)

    Article  CAS  Google Scholar 

  139. G. N. Emmons, W. S. Williams: Thermodynamics of order-disorder transformations in vanadium carbide, J. Mater. Sci. 18, 2489–2602 (1983)

    Article  Google Scholar 

  140. V. N. Lipatnikov, A. I. Gusev, P. Ettmaier, W. Lengauer: Order—disorder phase transformations and specific heat of nonstoichiometric vanadium carbide, Fiz. Tverd. Tela 41, 529–536 (1999) (in Russian). (Engl. transl.: Physics of the Solid State 41, 474–480 (1999))

    Google Scholar 

  141. V. S. Neshpor, S. S. Ordan’yan, A. I. Avgustinnik, M. B. Khusidman: Influence of chemical composition on electrical and thermophysical properties of ziconium and niobium carbides in their homogeneity intervals, Zh. Prikl. Khimii 37, 2375–2379 (1964) (in Russian)

    CAS  Google Scholar 

  142. I. I. Matveenko, L. B. Dubrovskaya, G. D. Bogomolov, V. G. Zubkov, P. V. Geld: Electrical conductivity of titanium oxicarbides, Izv. AN SSSR. Neorgan. Materialy 6, 1190–1191 (1970) (in Russian)

    CAS  Google Scholar 

  143. V. G. Zubkov, I. I. Matveenko, L. B. Dubrovskaya, G. D. Bogomolov, P. V. Geld: Neutron diffraction study of structure of titanium oxicarbides, Doklady Akad. Nauk SSSR 191, 323–325 (1970) (in Russian)

    CAS  Google Scholar 

  144. H. Bittner, H. Goretzki: Magnetische Untersuchungen der Carbide TiC, ZrC, HfC, VC, NbC and TaC, Monatsh. Chem. 93, 1000–1004 (1962)

    CAS  Google Scholar 

  145. M. I. Lesnaya, V. F. Nemchenko, I. M. Vinitskii, V. Ya. Naumenko: Temperature dependence of magnetic susceptibility of titanium monocarbide in homogeneity region, Izv. AN SSSR. Neorgan. Materialy 13, 840–843 (1977) (in Russian)

    CAS  Google Scholar 

  146. A. S. Borukhovich, L. B. Dubrovskaya, I. I. Matveenko, P. V. Geld: Magnetic susceptibility and energy band structure of zirconium monocarbide, Phys. Stat. Sol. 36, 97–102 (1969)

    Article  CAS  Google Scholar 

  147. M. Ishikawa, L. E. Toth: Spezifische Warme and magnetische Suszeptibilitat von Vanadincarbiden VC„, Monatsh. Chem. 103, 492–502 (1972)

    CAS  Google Scholar 

  148. I. I.Matveenko, L.B.Dubrovskaya, P.V.Geld, M.G.Tretnikova: Magnetic susceptibility of cubic niobium carbide, Izv. AN SSSR. Neorgan. Materialy 1, 1062–1064 (1965) (in Russian)

    Google Scholar 

  149. A. S. Borukhovich, L. B. Dubrovskaya, I. I. Matveenko, P. V. Geld: Magnetic susceptibility of niobium and tantalum monocarbides at low temperatures, Fiz. Tverd. Tela 11, 830–832 (1969) (in Russian)

    CAS  Google Scholar 

  150. Ya. E. Genkin, I. A. Milovanova, A. V. Lyakutkin: Magnetic susceptibility of some compounds of niobium with boron, carbon and nitrogen, Izv. AN Kazakh. SSR. Seriya fiz.-mat. No. 2, 12–16 (1976) (in Russian)

    Google Scholar 

  151. L. B. Dubrovskaya, I. I. Matveenko: Magnetic properties of cubic tantalum carbide, Fiz. Metall. Metalloved. 19, 199–204 (1965) (in Russian)

    CAS  Google Scholar 

  152. L. V. Zueva, S. Z. Nazarova, V. N. Lipatnikov, A. I. Gusev: Effect of atom—vacancy ordering on magnetuc susceptibility of nonstoichiometric titanium carbide, Doklady Akad. Nauk 365, 82–86 (1999) (in Russian). (Engl. transl.: Doklady Phys. Chem. 365, 65–69 (1999))

    Google Scholar 

  153. L. V. Zueva, V. N. Lipatnikov, A. I. Gusev: Magnetic susceptibility and ordering of titanium carbide, Zh. Fiz Khimii 73, 2163–2169 (1999) (in Russian). (Engl. transl.: Russ. J. Phys. Chem. 73, 1952–1959 (1999))

    Google Scholar 

  154. A. N. Zyryanova, S. Z. Nazarova, A. I. Gusev: Magnetic susceptibility anomaly as evidence for ordering of nonstoichiometric hafnium carbide HfCy, Doklady Akad. Nauk 359, 348–353 (1998) (in Russian). (Engl. transl.: Doklady Phys. Chem. 359, 91–96 (1998))

    Google Scholar 

  155. A. N. Zyryanova, A. I. Gusev: Magnetic susceptibility and ordering in nonstoichiometric hafnium carbide, Zh. Fiz. Khimii 72, 2234–2242 (1998) (in Russian). (Engl. transi.: Russ. J. Phys. Chem. 72, 3034–3041 (1998))

    Google Scholar 

  156. A. I. Gusev, A. N. Zyryanova: Atomic-vacancy ordering and magnetic susceptibility of nonstoichiometric hafnium carbide, Pis’ma v ZhETF 69, 2096–301 (1999) (in Russian). (Engl. transi.: JETP Letters 69, 324–329 (1999))

    Google Scholar 

  157. A. I. Gusev, A. N. Zyryanova: Ordering and magnetic susceptibility of non-stoichiometric hafnium carbide, Phys. Stat. Sol. (a) 177, 419–437 (2000)

    Article  CAS  Google Scholar 

  158. V. N. Lipatnikov, A. I. Gusev, A. A. Rempel, G. P. Shveikin• Effect of structural transition on magnetic susceptibility of tantalum carbide, Doklady Akad. Nauk SSSR 297, 849–853 (1987) (in Russian). (Engl. transl.: Sov. Physics Doklady 32, 988–990 (1987))

    Google Scholar 

  159. V. N. Lipatnikov, A. A. Rempel, A. I. Gusev: The influence of ordering of the vacancies on the magnetic susceptibility of tantalum carbide, Zh. Neorgan. Khimii 33, 1860–1863 (1988) (in Russian). (Engl. transl.: Russ. J. Inorg. Chem. 33, 1058–1059 (1988))

    Google Scholar 

  160. V. N. Lipatnikov, A. I. Gusev: Magnetic susceptibility of TaCY in the disordered and ordered states, in Solid State Chemistry, P. V. Geld (Ed.) ( Ural Polytechnical Institute, Sverdlovsk 1988 ) pp. 144–149 (in Russian)

    Google Scholar 

  161. A. I. Gusev, A. A. Rempel, V. N. Lipatnikov: Magnetic susceptibility and atomic ordering in tantalum carbide, Phys. Stat. Sol. (a) 106, 459–466 (1988)

    Article  CAS  Google Scholar 

  162. J. P. Landesman, A. N. Christensen, C. H. de Novion, N. Lorenzelli, P. Convert P. Order-disorder transition and structure of the ordered vacancy compound Nb6C5: powder neutron diffraction studies, J. Phys. C: Solid State Phys. 18, 809–823 (1985)

    Article  CAS  Google Scholar 

  163. A. I. Gusev: Phase diagrams of ordered nonstoichiometric hafnium carbide and titanium nitride, Doklady Akad. Nauk 322, 918–923 (1992) (in Russian). (Engl. transi.: Doklady Phys. Chem. 322, 84–88 (1992))

    Google Scholar 

  164. A. I. Gusev, A. A. Rempel: Calculation of phase diagrams of interstitial compounds, J. Phys. Chem. Solids 55, 299–304 (1994)

    Article  CAS  Google Scholar 

  165. A. I. Gusev, A. A. Rempel: Atomic ordering and phase equilibria in strongly nonstoichiometric carbides and nitrides, in Materials Science of Carbides, Nitrides and Borides, Y. G. Gogotsi, R. A. Andrievski (Eds.) ( Kluwer Academic Publishers, Dordrecht 1999 ). pp. 47–64

    Google Scholar 

  166. A. I. Gusev: Order—disorder transformations and phase equilibrium in strongly nonstoichiometric compounds, Uspekhi Fiz. Nauk 170, 3–40 (2000) (in Russian). (Engl. transl.: Physics — Uspekhi 43, 1–37 (2000))

    Google Scholar 

  167. L. B. Dubrovskaya, S. Z. Nazarova, E. T. Kachkovskaya: Magnetic susceptibility of ordered titanium carbide, Izv. AN SSSR. Neorgan. Materialy 20, 783–785 (1984) (in Russian)

    Google Scholar 

  168. P. W. Selwood: Magnetochemistry, 2nd edn. ( Interscience Publ., New York 1956 ) 435 pp.

    Google Scholar 

  169. S. V. Vonsovskii: Magnetism ( Nauka, Moscow 1971 ) 1032 pp. (in Russian)

    Google Scholar 

  170. L. B. Dubrovskaya, A. G. Rabinkin, P. V. Geld: Nature of superconducting niobium and tantalum monocarbides, ZhETF 62, 300–306 (1972) (in Russian)

    CAS  Google Scholar 

  171. P. V. Geld, V. A. Tskhai, A. S. Borukhovich, L. B. Dubrovskaya, I. I. Matveenko: Conduction band of IVa and Va subgroup transition metal carbides (I), Phys. Stat. Sol. (b) 42, 85–93 (1970)

    Article  CAS  Google Scholar 

  172. J. Redinger, R. Eibler, P. Herzig, A. Neckel, R. Podloucky, E. Wimmer: Vacancy induced changes in the electronic structure of titanium carbide. 1. Band structure and density of states, J. Phys. Chem. Solids 46, 383–398 (1985)

    Article  CAS  Google Scholar 

  173. J. Redinger, R. Eibler, P. Herzig, A. Neckel, R. Podloucky, E. Wimmer Vacancy induced changes in the electronic structure of titanium carbide. 2. Electron densities and chemical bonding, J. Phys. Chem. Solids 47, 387–393 (1986)

    CAS  Google Scholar 

  174. A. A. Rempel, A. I. Gusev, E. M. Gololobov, N. A. Prytkova, Zh. M. Tomilo: Influence of ordering on the superconducting transition temperature of nonstoichiometric niobium carbide, Fiz. Tverd. Tela 28 279–281 (1986) (in Russian). (Engl. transl.: Soy. Physics — Solid State 28 153–154 (1986))

    Google Scholar 

  175. A. A. Rempel, A. I. Gusev, E. M. Gololobov, N. A. Prytkova, Zh. M. Tomilo: Specific heat, superconductivity, and order-disorder transition in nonstoichiometric niobium carbide, Zh. Fiz. Khimii 61 1761–1766 (1987) (in Russian). (Engl. transl.: Russ. J. Phys. Chem. 61 919–922 (1987))

    Google Scholar 

  176. A. A. Rempel, A. I. Gusev: Short-range order in ordered alloys and interstitial phases, Fiz. Tverd. Tela 32 16–24 (1990) (in Russian). (Engl. transl.: Soy. Physics — Solid State 32 8–13 (1990))

    Google Scholar 

  177. A. A. Rempel, A. I. Gusev: Short-range order in superstructures, Phys. Stat. Sol. (b) 160, 389–402 (1990)

    Article  CAS  Google Scholar 

  178. J. Billingham, P. S. Bell, M. H. Lewis: Vacancy short-range order in substoichiometric transition metal carbides and nitrides with the NaC1 structure. Electron diffraction studies of short-range ordered compounds, Acta Crystallogr. A 28, 602–606 (1972)

    Article  CAS  Google Scholar 

  179. M. Sauvage, E. Parthe: Vacancy short-range order in substoichiometric transition metal carbides and nitrides with the NaC1 structure. Numerical calculation of vacancy arrangement, Acta Crystallogr. A 28, 607–616 (1972)

    Article  CAS  Google Scholar 

  180. M. Sauvage, E. Parthe, W. B. Yelon: Neutron diffraction measurement of diffuse scattering in VC075, Acta Crystallogr. A 30, 597–599 (1974)

    CAS  Google Scholar 

  181. C. H. de Novion, V. Maurice: Order and disorder in carbides and nitrides, J. Physique Colloq. (France) 38, C7–211—C7–220 (1977)

    Google Scholar 

  182. K. Hiraga, M. Hirabayashi: Long-range and short-range order in interstitial compounds M2X with special reference to V2C and Nb2C, J. Physique Colloq. (France) 38, C7–224—C7–226 (1977)

    Google Scholar 

  183. L. Toth: Transition Metal Carbides and Nitrides ( Academic Press, New York and London 1971 ) 280 pp.

    Google Scholar 

  184. S. V. Vonsovskii, Yu. A. lzyumov, E. Z. Kurmaev: Superconductivity of Transition Metals, Their Alloys and Compounds ( Nauka, Moscow 1977 ) 384 pp. (in Russian)

    Google Scholar 

  185. V. S. Neshpor, V. P. Nikitin, V. I. Novikov: Superconductivity and residial resistivity of titanium carbide, Izv. AN SSSR. Neorgan. Materialy 7, 1743–1747 (1971) (in Russian)

    CAS  Google Scholar 

  186. T. G. Utkina, Yu. S. Karimov, A. S. Rogachev: About possibility of existence of high-temperature superconducting phase of titanium carbide near the lower boundary of the homogeneity region, Fiz. Tverd. Tela 26, 286–288 (1984) (in Russian)

    CAS  Google Scholar 

  187. A. L. Giorgi, E. G. Szklarz, E. K. Storms, A. L. Bowman, B T Matthias: Effect of composition on the superconducting transition temperature of tantalum carbide and niobium carbide, Phys. Rev. 125, 837–838 (1962)

    Article  CAS  Google Scholar 

  188. R. H. Willens, E. Buehler, B. T. Matthias: Superconductivity of transition metal carbides, Phys. Rev. 159, 327–330 (1967)

    Article  CAS  Google Scholar 

  189. L. E. Toth, M. Ishikawa, Y. A. Chang: Low-temperature heat capacity of superconducting niobium and tantalum carbides, Acta Met. 16, 1183–1187 (1963)

    Article  Google Scholar 

  190. A. N. Christensen: Vacancy order in Nb6C5, Acta Chem. Scand. A 39, 803–804 (1985)

    Article  Google Scholar 

  191. V. L. Ginzburg: Problem of high-temperature superconductivity, Uspekhi Fiz. Nauk 95, 91–110 (1968); 101, 185–215 (1970) (in Russian)

    CAS  Google Scholar 

  192. L. W. Shaklette, L. G. Radosevich, W. S. Williams: Gap energy of superconducting niobium carbide, Phys. Rev. B 4, 84–87 (1971)

    Article  Google Scholar 

  193. L. N. Bulaevskii, V. L. Ginzburg, G. F. Zharkov, D. A. Kirzhnits, Yu. V. Kopaev, E. G. Maksimov, D. I. Khomskii: Problem of High-Temperature Superconductivity, V. L. Ginzburg (Ed.) (Nauka, Moscow 1977 ) 400 pp. (in Russian)

    Google Scholar 

  194. W. L. McMillan: Transition temperature of strong coupled superconductors, Phys. Rev. 167, 331–334 (1968)

    Article  CAS  Google Scholar 

  195. G. M. Eliashberg: Interaction of electrons with oscillation of lattice in superconductor, ZhETF 38, 976–996 (1960) (in Russian)

    Google Scholar 

  196. P. Morel, P. W. Anderson: Calculation of the superconducting state parameters with retaded electron-phonon interaction, Phys. Rev. 125, 1263–1271 (1962)

    Article  Google Scholar 

  197. A. S. Borukhovich, P. V. Geld, V. A. Tskhai, L. B. Dubrovskaya, I. I. Matveenko: Conduction band of IVa and Va subgroup transition metal carbides — II, Phys. Stat. Sol. (b) 45, 179–187 (1971)

    Article  CAS  Google Scholar 

  198. M. Morinaga, K. Sato, A. Aoki, H. Adachi, J. Harada: Existence of a vacancy band in electronic structures of niobium metal compounds, Philosoph. Mag. 47, 107–111 (1983).

    CAS  Google Scholar 

  199. A. V. Svidzinskii• Space-inhomogeneous Problems of Theory of Superconductivity ( Nauka, Moscow 1982 ) 312 pp. (in Russian)

    Google Scholar 

  200. A. A. Rempel, V. N. Lipatnikov, A. I. Gusev: Distribution function of carbon atoms and order parameters in ordered carbides of the type M6C5, Kristallografiya 32, 1032–1033 (1987) (in Russian). (Engl. transl.: Sov. Physics — Crystallography 32, 607–608 (1987))

    Google Scholar 

  201. A. I. Gusev, A. A. Rempel: Vacancy distribution in ordered Me6C5-type carbides, J. Phys. C: Solid State Phys. 20, 5011–5025 (1987)

    Article  CAS  Google Scholar 

  202. I. N. Khlustikov, S. I. Moskvin: Superconductivity of twinned plane and topological phase transition in two-dimension superconducting system, ZhETF 89, 1846–1856 (1985) (in Russian)

    Google Scholar 

  203. A. I. Buzdin, N. A. Khvorikov: Analysis of superconductivity of twinned plane in tin and niobium, ZhETF 89, 1857–1869 (1985) (in Russian)

    CAS  Google Scholar 

  204. Yu. S. Karimov, T. G. Utkina: Superconductivity of nonstoichiometric niobium carbide, Pis’ma v ZhETF 51, 468–470 (1990) (in Russian)

    CAS  Google Scholar 

  205. A. I. Gusev, A. A. Rempel, V. N. Lipatnikov: Incommensurate superlattice and superconductivity in tantalum carbide, Fiz. Tverd. Tela 33, 2298–2305 (1991) (in Russian). (Engl. transl.: Soy. Physics — Solid State 33, 1295–1299 (1991))

    Google Scholar 

  206. N. Pessal, R. E. Gold, H. A. Johansen: A study of superconductivity in interstitial compounds, J. Phys. Chem. Solids 29, 19–38 (1968)

    Article  Google Scholar 

  207. A. A. Rempel, V. N. Lipatnikov, A. I. Gusev: The superstructure in nonstoichiometric tantalum carbide, Doklady Akad. Nauk SSSR 310, 878–882 (1990) (in Russian). (Engl. transl.: Soy. Physics Doklady35, 103–106 (1990))

    Google Scholar 

  208. V. N. Lipatnikov, A. A. Rempel, A. I. Gusev: Specific heat of tantalum carbide in states with different degrees of order, Fiz. Tverd. Tela 31, 285–287 (1989) (in Russian). (Engl. transi.: Sov. Physics — Solid State 31, 1818–1819 (1989))

    Google Scholar 

  209. A. I. Gusev, A. A. Rempel, V. N. Lipatnikov: Thermodynamic model of atomic ordering. 5. Specific heat of non-stoichiometric compounds in different structural states, Zh. Fiz. Khimii 64, 2343–2348 (1990) (in Russian). (Engl. transi.: Russ. J. Phys. Chem. 64, 1265–1267 (1990))

    Google Scholar 

  210. A. I. Gusev, A. A. Rempel, V. N. Lipatnikov: Heat capacity of niobium and tantalum carbides NbCC and TaCy in disordered and ordered states below 300 K, Phys. Stat. Sol. (b) 194, 467–482 (1996)

    Article  CAS  Google Scholar 

  211. B. T. Matthias: Transition temperatures of superconductors, Phys. Rev. 94, 874–876 (1953)

    Article  Google Scholar 

  212. A. A. Rempel, A. I. Gusev: Specific heat of niobium carbide in different structure states, Zh. Fiz Khimii 62, 2897–2901 (1988) (in Russian). (Engl. transi.: Russ. J. Phys. Chem. 62, 1509–1511 (1988))

    Google Scholar 

  213. A. A. Rempel, A. I. Gusev: Heat capacity of niobium carbide in different structural states, Phys. Stat. Sol. (a) 113, 353–358 (1989)

    Article  CAS  Google Scholar 

  214. S. Z. Nazarova, A. I. Gusev: Heat capacity of NbxTal_xC solid solutions, Izv. AN SSSR. Neorgan. Materialy 24, 747–751 (1988) (in Russian). (Engl. transi.: Inorganic Materials 24, 626–629 (1988))

    Google Scholar 

  215. G. Leibfried: Gittertheorie der Mechanischen and Thermischen Eigenschaften der Kristalle ( Springer-Verlag, Berlin 1955 )

    Google Scholar 

  216. T. A. Sandenaw, E. K. Storms: Heat capacities of NbCo.7o2, NbCos2s, NbCo.9so and Nb2C below 320 K, J. Phys. Chem. Solids 27, 217–218 (1966)

    Article  CAS  Google Scholar 

  217. K. K. Kelley: Specific heat at low temperatures of tantalum oxide and tantalum carbide, J. Amer. Chem. Soc. 62, 818–819 (1940)

    Article  CAS  Google Scholar 

  218. M. Ciguani: Metodi Monte-Carlo e sequenze pseudo casuali, Rendiconti del Seminario Matematico e Fisico di Milano 34, 99–129 (1964)

    Article  Google Scholar 

  219. J. A. Neider, R. Mead: Simplex method for function minimization, Comput. J. 7, 308–313 (1965)

    Google Scholar 

  220. W. C. Davidon: Variance algorithm for minimization, Comput. J. 10, 406–410 (1968)

    Article  Google Scholar 

  221. A. I. Gusev, A. A. Rempel: Calculating the energy parameters for CV and OPF methods, Phys. Stat. Sol. (b) 140, 335–346 (1987)

    Article  CAS  Google Scholar 

  222. A. I. Gusev, A. A. Rempel, V. N. Lipatnikov: Thermodynamic model of atomic ordering. 3. Calculation of cluster energies, Zh. Fiz Khimii 61, 916–921 (1987) (in Russian). (Engl. transi.: Russ. J. Phys. Chem. 61, 476–479 (1987))

    Google Scholar 

  223. E. J. Huber, E. L. Head, C. E. Holley, E. K. Storms, N. H. Krikorian: The heat of combustion of niobium carbides, J. Phys. Chem. 65, 1846–1849 (1961)

    Article  CAS  Google Scholar 

  224. P. V. Geld, F. G. Kusenko: Enthalpy and heat capacity of niobium oxides and carbides at high temperature, Metallurgiya i Toplivo No. 2, 79–86 (1960) (in Russian)

    Google Scholar 

  225. E. J. Huber, E. L. Head, C. E. Holley, A. L. Bowman: The heat of formation of tantalum carbides, J. Phys. Chem. 67, 794–796 (1963)

    Google Scholar 

  226. A. S. Bolgar, E. A. Guseva, V. A. Gorbatuk, V. V. Fesenko: Enthalpy and heat capacity of tantalum carbide in homogeneity interval, Poroshkovaya Metallurgiya No. 4, 60–62 (1968) (in Russian)

    Google Scholar 

  227. V. N. Lipatnikov, A. I. Gusev: High-temperature heat capacity and order—disorder phase transformations in nonstoichiometric titanium carbide, Phys. Stat. Sol. (b) 212, R11 — R12 (1999)

    Article  CAS  Google Scholar 

  228. N. M. Volkova, P. V. Geld, S. I. Alyamovskii: Phase transformation of highest vanadium carbide, Zh. Neorgan. Khimii 10, 1758–1759 (1965) (in Russian). (Engl. transi.: Russ. J. Inorg. Chem. 10, 960–961 (1965))

    Google Scholar 

  229. N. M. Volkova, P. V. Geld: Temperature dependencies of enthalpy of vanadium carbide, Trudy Inst. Khimii Ural Fil. Akad. Nauk SSSR 14, 41–46 (1967) (in Russian)

    Google Scholar 

  230. H. Wiesenberger, W. Lengauer, P. Ettmayer: Reactive diffusion and phase equilibria in the V—C, Nb—C, Ta—C and Ta—N systems, Acta Mater. 46, 651–666 (1998)

    Article  CAS  Google Scholar 

  231. W. Lengauer, S. Binder, K. Aigner, P. Ettmayer, A. Guillou, J. Debuigne: Solid state properties of group IVb carbonitrides, J. Alloys Comp. 217, 137–147 (1995)

    Article  CAS  Google Scholar 

  232. M. P. Arbuzov, S. Ya. Golub, B. V. Khaenko: Study of the phases of the Ti—TiC—TiN system, Izv. AN SSSR. Neorgan. Materialy 14, 1442–1445 (1978) (in Russian)

    CAS  Google Scholar 

  233. C. Lobier, J. P. Marcon: Etude et structure d’une nouvelle phase du souns-nitrure de titane Ti2N, Compt. Rend. Acad. Sci. Paris. Ser. C. 268, 1132–1135 (1969)

    CAS  Google Scholar 

  234. E. Etchessahar, Sohn Yong-Un, M. Harmelin, J. Debuigne: The Ti—N system: kinetic, calorimetric, structural and metallurgical investigations of the 6-TiN0.51 phase, J. Less-Common Met. 167, 261–281 (1991)

    Article  CAS  Google Scholar 

  235. W. Lengauer: A study of 8-TiNI_x formation in temperature gradient diffusion couples, J. Alloys Comp. 179, 289–297 (1992)

    Article  CAS  Google Scholar 

  236. V. T. Em, I. Karimov, I. S. Latergaus: Influence of nitrogen on characteristics of order-disorder phase transition in TiC,, Metallofizika 9, 113–114 (1987) (in Russian)

    CAS  Google Scholar 

  237. V. T. Em, M. Yu. Tashmetov: The structure of the ordered phase in rocksalt type titanium carbide, carbidenitride, and carbidehydride, Phys. Stat. Sol. (b) 198, 571–575 (1996)

    Article  CAS  Google Scholar 

  238. L. Ramqvist: Variation of lattice parameter and hardness with carbon content of group 4b metal carbides, Jernkontorets Annaler. 152, 517–523 (1968)

    CAS  Google Scholar 

  239. A. A. Rempel, A. I. Gusev, L.-M. Berger, V. Richter: Nonstoichiometric transition metal carbides — synthesis, properties and potential areas of application, in Covalent Ceramics II: Non-oxides, A. R. Barron, G. S. Fischman, M. A. Fury, A. F. Hepp (Eds.), USA Mater. Res. Soc. Symp. Proc. 327, Boston, Massachusetts, November 29 — December 2, 1993 ( Materials Research Society, Pittsburgh (Pennsylvania) 1994 ) pp. 183–188

    Google Scholar 

  240. A. E. Koval’skii, T. G. Makarenko: Dependence of titanium carbide microhardness on carbon content, Zh. Tekhn Fiz. 23, 265–266 (1953) (in Russian)

    Google Scholar 

  241. I. Cadoff, J. P. Nielsen, E. Miller: Properties of arc-melted versus powder metallurgy titanium carbide, in Papers Presented on 2nd Plansee Seminar “De Re Metallica”, Plansee Proc. 1955 ( Metallwerk Plansee GmbH, Reutte 1956 ) pp. 50–55

    Google Scholar 

  242. J.-L. Chermant: Du carbure de titane: réactions de formation et propriétés mécaniques, Rev. Int. Hautes Temp. et Refract. 6, 299–312 (1969)

    CAS  Google Scholar 

  243. I. I. Spivak, R. A. Andrievski, V. N. Rystsov, V. V. Klimenko: Creep of titanium monocarbide in the homogeneity interval, Poroshkovaya Metallurgiya No. 7, 69–74 (1974) (in Russian)

    Google Scholar 

  244. Yu. G. Tkachenko, S.S.Ordan’yan, V. K. Yulyugin, D. Z. Yurchenko, G. S. Tabatadze, I. B. Panteleev: Characteristics of friction and features of deformation of TiC in contant zone, Poroshkovaya Metallurgiya No. 6, 45–51 (1979) (in Russian)

    Google Scholar 

  245. E. Breval: Microplasticity at room temperature of single-crystal titanium carbide with different stoichiometry, J. Mater. Sci. 16, 2781–2788 (1981)

    Article  CAS  Google Scholar 

  246. V. G. Bukatov: Study of physical and mechanical properties of refractory metal carbides and some their alloys, Ph. D. Thesis, Institute of Steel and Alloys, Moscow (1979) (in Russian)

    Google Scholar 

  247. J.-L. Chermant, P. Delavignette, A. Deschanvres: Etude des bandes de precipitation dans le carbure de titane sous stoechiométrique, J. Less-Common Met. 21, 89–101 (1970)

    Article  CAS  Google Scholar 

  248. V. S. Sinelnikova, T. I. Shtukaturova, L. V. Strashinskaya, T. I. Shaposhnikova, G. S. Burkhanov, V. A. Kuzmishev: Composition and structure of single crystal of titanium carbide, Poroshkovaya Metallurgiya No. 8, 53–57 (1981) (in Russian)

    Google Scholar 

  249. M. P. Arbuzov, B. V. Khaenko, E. T. Kachkovskaya: Study of ageing and ordering of titanium carbide, Fiz. Metall. Metalloved. 44, 1240–1244 (1977) (in Russian)

    CAS  Google Scholar 

  250. V. N. Lipatnikov, L. V. Zueva, A. I. Gusev: Microhardness and grain size of disordered nonstoichiometric titanium carbide, Neorgan. Materialy 35, 1330–1336 (1999) (in Russian). (Engl. transl.: Inorganic Materials 35, 1137–1143 (1999))

    Google Scholar 

  251. S. Sarian: Diffusion of 44Ti in TiCx, J. Appl. Phys. 40, 3515–3520 (1969)

    Article  CAS  Google Scholar 

  252. S. Sarian: Diffusion of carbon in TiC, J. Appl. Phys. 39, 3305–3310 (1968)

    Article  CAS  Google Scholar 

  253. R. A. Andrievski, A. G. Lanin, G. A. Rymashevskii: Strength of High-Melting Compounds ( Metallurgiya, Moscow 1974 ) 232 pp. (in Russian)

    Google Scholar 

  254. G. V. Samsonov, S. A. Bozhko: Study of recrystallization at sintering of niobium and titanium carbide powders, Poroshkovaya Metallurgiya No. 7, 31–35 (1969) (in Russian)

    Google Scholar 

  255. S. A. Bozhko, G. V. Samsonov: Collective recrystallization in titanium carbide,.Izv. AN SSSR. Neorgan. Materialy 7, 59–63 (1971) (in Russian)

    CAS  Google Scholar 

  256. J. Klima: Density of states of substoichiometric TiCx, J. Phys. C: Solid State Phys. 12, 3691–3698 (1979)

    Article  CAS  Google Scholar 

  257. L. M. Huisman, A. E. Carlsson, C. D. Gelatt, H. Ehrenreich: Mechanisms for energetic-vacancy stabilization: TiO and TiC, Phys. Rev. B 22, 991–1006 (1980)

    Article  CAS  Google Scholar 

  258. W. S. Williams, R. D. Shaal: Elastic deformation, plastic flow, and dislocations in single crystals of titanium carbide, J. Appl. Phys. 33, 955–962 (1962)

    Article  CAS  Google Scholar 

  259. G. E. Hollox, R. E. Smallman: Plastic behavior of titanium carbide, J. Appl. Phys. 37, 818–823 (1966)

    Article  CAS  Google Scholar 

  260. E. Breval: Fracture and plastic deformation of titanium carbide at room temperature, Scand. J. Metall. 10, 51–54 (1981)

    CAS  Google Scholar 

  261. D. J. Rowcliffe, G. E. Hollox: Hardness anisotropy, deformation mechanisms, and brittle-to-ductile transition in carbides, J. Mater. Sci. 6, 1270–1276 (1971)

    Article  CAS  Google Scholar 

  262. D. K. Chatterjee, M. G. Mendiratta, H. A. Lipsitt: Deformation behavior of single crystals of titanium carbide, J. Mater. Sci. 14, 2151–2156 (1979)

    Article  CAS  Google Scholar 

  263. H. Höchst, R. O. Bringans, P. Steiner, Th. Wolf: Photoemission study of the electronic structure of stoichiometric and substoichiometric TiN and ZrN, Phys. Rev. B 25, 7183–7191 (1982)

    Article  Google Scholar 

  264. L. Porte, L. Roux, J. Hanus: Vacancy effects in the X-ray photoelectron spectra of TiNx, Phys. Rev. B. 28, 3214–3224 (1983)

    Article  CAS  Google Scholar 

  265. L. Porte: Electronic structure of non-stoichiometric zirconium nitrides ZrNx, Solid State Commun. 50, 303–306 (1984)

    Article  CAS  Google Scholar 

  266. P. Pecheur, G. Toussaint, E. Kauffer: Electronic structure of carbon vacancy in NbC, Phys. Rev. B 29, 6606–6613 (1984)

    Article  CAS  Google Scholar 

  267. P. Herzig, J. Redinger, R. Eibier, A. Neckel: Vacancy induced changes in the electronic structure of titanium nitride, J. Sol. State Chem. 70, 281–294 (1987)

    Article  CAS  Google Scholar 

  268. K. Schwarz: Band structure and chemical bonding in transition metal carbides and nitrides, Critical Rev. Solid State Mater. Sci. 13, 211–257 (1987)

    Article  CAS  Google Scholar 

  269. O. V. Bakun, O. N. Grigor’ev, B. V. Khaenko: Microstructure and some strength properties of ordered phase of titanium carbide, Doklady Akad. Nauk Ukrain. SSR. Seriya A No. 12, 62–65 (1983) (in Russian)

    Google Scholar 

  270. L. V. Zueva, V. N. Lipatnikov, A. I. Gusev: Ordering effects on the microstructure and microhardness of nonstoichiometric titanium carbide TiCy, Neorgan. Materialy 36 836–840 (2000) (in Russian). (Engl. transi.: Inorganic Materials 36 695–698 (2000))

    Google Scholar 

  271. A. I. Gusev: Effects of the nanocrystalline state in solids, Uspekhi Fiz. Nauk 168 55–83 (1998) (in Russian). (Engl. transi.: Physics — Uspekhi 41 49–76 (1998))

    Google Scholar 

  272. A. I. Gusev: Nanocrystalline Materials: Production and Properties ( Ural Division of the Russian Academy of Sciences, Ekaterinburg 1998 ) 200 pp. (in Russian)

    Google Scholar 

  273. O. P. Sivak: Atomic ordering in niobium carbides, Ph. D. Thesis, Institute of Problems of Material Science, Kiev (1988) 194 pp. (in Russian)

    Google Scholar 

  274. R. H. J. Hannik, M. J. Murray: The effect of domain size on the hardness of ordered VC0.84, Acta Metal. 20, 123–131 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gusev, A.I., Rempel, A.A., Magerl, A.J. (2001). Effects of Ordering on the Properties of Strongly Nonstoichiometric Compounds. In: Disorder and Order in Strongly Nonstoichiometric Compounds. Springer Series in Materials Science, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04582-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04582-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07524-7

  • Online ISBN: 978-3-662-04582-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics