Advertisement

Equilibrium Phase Diagrams

  • Alexandr I. Gusev
  • Andrej A. Rempel
  • Andreas J. Magerl
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 47)

Abstract

Calculations of order—disorder phase transformations reduce to determining and comparing the free energies of disordered and various ordered phases. Consequently, it is possible to find temperature and concentration intervals within which one or another phase is in a thermodynamic equilibrium state. In the case of order—order transformations, the free energies of different ordered phases are compared and the temperature and concentration intervals of their existence are determined. Thus, such calculations result in the construction of a phase diagram. Calculation of phase diagrams of ordering systems is a highly complicated task. It is only since 1985 that this task was first tackled for nonstoichiometric interstitial compounds.

Keywords

Titanium Carbide Equilibrium Phase Diagram Vanadium Carbide Niobium Carbide Nonstoichiometric Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Gusev: Physical Chemistry of Nonstoichiometric Refractory Compounds ( Nauka, Moscow 1991 ) 286 pp. (in Russian)Google Scholar
  2. 2.
    A. I. Gusev, A. A. Rempel: Structural Phase Transitions in Nonstoichiometric Compounds ( Nauka, Moscow 1988 ) 308 pp. (in Russian)Google Scholar
  3. 3.
    A. I. Gusev, A. A. Rempel: Order parameter functional method in the theory of atomic ordering, Phys. Stat. Sol. (b) 131, 43–51 (1985)CrossRefGoogle Scholar
  4. 4.
    AA. Gusev, A. A. Rempel: Calculating the energy parameters for CV and OPF methods, Phys. Stat. Sol. (b) 140, 335–346 (1987)CrossRefGoogle Scholar
  5. 5.
    A. I. Gusev: Atomic ordering and the order parameter functional method, Philosoph. Mag. B 60, 307–324 (1989)CrossRefGoogle Scholar
  6. 6.
    A. I. Gusev, A. A. Rempel: Thermodynamic model of atomic ordering. 1. Basic equations, Zh. Fiz. Khimii 60, 1349–1352 (1986) (in Russian). (Engl. transi.: Russ. J. Phys. Chem. 60, 808–810 (1986))Google Scholar
  7. 7.
    A. A. Rempel, A. I. Gusev: Thermodynamic model of atomic ordering. 2. The order-disorder structural phase transition in nonstoichiometric niobium carbide, Zh. Fiz. Khimii 60, 1353–1357 (1986) (in Russian). (Engl. transl.: Russ. J. Phys. Chem. 60, 810–813 (1986))Google Scholar
  8. 8.
    A. I. Gusev, A. A. Rempel, V. N. Lipatnikov: Thermodynamic model of atomic ordering. 3. Calculation of cluster energies, Zh. Fiz. Khimii 61, 916–921 (1987) (in Russian). (Engl. transl.: Russ. J. Phys. Chem. 61, 476–479 (1987))Google Scholar
  9. 9.
    A. A. Rempel: Effects of Ordering in Nonstoichiometric Interstitial Compounds ( Nauka, Ekaterinburg 1992 ) 232 pp. (in Russian)Google Scholar
  10. 10.
    A. I. Gusev: Phase equilibria and phase diagrams of systems with atomic ordering, Doklady Akad. Nauk SSSR 313, 887–893 (1990) (in Russian). (Engl. transi.: Doklady Phys. Chem. 313, 615–620 (1990))Google Scholar
  11. 11.
    A. I. Gusev: Phase diagrams for ordering systems in order-parameter functional method, Fiz. Tverd. Tela 32, 2752–2760 (1990) (in Russian). (Engl. transl.: Sov. Physics — Solid State 32, 1595–1599 (1990))Google Scholar
  12. 12.
    A. I. Gusev, A. A. Rempel: Thermodynamic model of atomic ordering. Phase diagrams of ordered systems, Zh. Fiz. Khimii 65, 625–633 (1991) (in Russian). (Engl. transi.: Russ. J. Phys. Chem. 65, 330–334 (1991))Google Scholar
  13. 13.
    A. I. Gusev: Phase diagrams of ordered nonstoichiometric hafnium carbide and titanium nitride, Doklady Akademii Nauk 322, 918–923 (1992) (in Russian). (Engl. transl.: Doklady Phys. Chem. 322, 84–88 (1992))Google Scholar
  14. 14.
    A. I. Gusev, A. A. Rempel: Calculation of phase diagrams of interstitial compounds, J. Phys. Chem. Solids 55, 299–304 (1994)CrossRefGoogle Scholar
  15. 15.
    A. I. Gusev, A. A. Rempel: Phase diagrams of metal—carbon and metal—nitrogen systems and ordering in strongly nonstoichiometric carbides and nitrides, Phys. Stat. Sol. (a) 163, 273–304 (1997)CrossRefGoogle Scholar
  16. 16.
    A. I. Gusev, A. A. Rempel: Atomic ordering and phase equilibria in strongly nonstoichiometric carbides and nitrides, in Materials Science of Carbides, Nitrides and Borides, Y. G. Gogotsi, R. A. Andrievski (Eds.) ( Kluwer Academic Publishers, Dordrecht 1999 ) pp. 47–64CrossRefGoogle Scholar
  17. 17.
    A. I. Gusev, A. A. Rempel: OPF–method for calculation phase diagrams of hard materials, in Proc. Intern. Conf on Advances in Hard Materials Production, Bonn,Germany, May 4–6, 1992 (MPR Publ. Serv. Ltd, Shrewsbury, England 1992) pp. 39–139–11Google Scholar
  18. 18.
    T. Priem: Etude de l’ordre à courte distance dans les carbures et nitrures nonstoechiometriques de metaux de transition par diffusion diffuse de neutrons, Rapport CEA-R-5499 (Commissariat à l’Energie Atomique, Centre d’Etudes Nucléaires de Saclay, Gif-sur-Yvette (France) 1989 ) 162 pp.Google Scholar
  19. 19.
    T. Priem, B. Beuneu, C. H. de Novion, A. Finel, F. Livet: Short-range order, atomic displacements and effective interatomic ordering energies in TiN082, J. Physique (France). 50, 2217–2242 (1989)CrossRefGoogle Scholar
  20. 20.
    C. H. de Novion, B. Beuneu, T. Priem, N. Lorenzelli, A. Finel: Defect structures and order-disorder transformations in transition metal carbides and nitrides, in The Physics and Chemistry of Carbides, Nitrides and Borides, R. Freer (Ed.), ( Kluwer Acad. Publ., Netherlands 1990 ) pp. 329–355Google Scholar
  21. 21.
    D. Raabe: Computational Materials Science: The Simulation of Materials, Microstructures and Properties ( Wiley — VCH, Weinheim 1998 ) 379 pp.Google Scholar
  22. 22.
    A. A. Rempel: Atomic and vacancy ordering in nonstoichiometric carbides, Uspekhi Fiz. Nauk 166 33–62 (1996) (in Russian). (Engl. transl.: Physics — Uspekhi 39 3156 (1996))Google Scholar
  23. 23.
    A. I. Gusev: Short-range order in nonstoichiometric transition metal carbides, nitrides and oxides, Phys. Stat. Sol. (b) 156, 11–40 (1989)CrossRefGoogle Scholar
  24. 24.
    A. I. Gusev: Disorder and long-range order in nonstoichiometric interstitial compounds: transition metal carbides, nitrides and oxides, Phys. Stat. Sol. (b) 163, 17–54 (1991)CrossRefGoogle Scholar
  25. 25.
    A. I. Gusev, A. A. Rempel: Superstructures of non-stoichiometric interstitial compounds and the distribution functions of interstitial atoms, Phys. Stat. Sol. (a) 135, 15–58 (1993)CrossRefGoogle Scholar
  26. 26.
    V. N. Lipatnikov, A. I. Gusev, P. Ettmayer, W. Lengauer: Phase transformation in non-stoichiometric vanadium carbide, J. Phys.: Condens. Matter 11, 163–184 (1999)CrossRefGoogle Scholar
  27. 27.
    V. N. Lipatnikov, A. I. Gusev, P. Ettmaier, W. Lengauer: Order-disorder phase transformations and specific heat of nonstoichiometric vanadium carbide, Fiz. Tverd. Tela 41 529–536 (1999) (in Russian). (Engl. transl.: Physics of the Solid State 41 474–480 (1999))Google Scholar
  28. 28.
    E. Storms: The Refractory Carbides ( Academic Press, New York and London 1967 ) 300 pp.Google Scholar
  29. 29.
    L. Toth: Transition Metal Carbides and Nitrides ( Academic Press, New York and London 1971 ) 280 pp.Google Scholar
  30. 30.
    A. S. Bolgar, A. G. Turchanin, V. V. Fesenko: Thermodynamic Properties of Carbides ( Naukova Dumka, Kiev 1973 ) 272 pp. (in Russian)Google Scholar
  31. 31.
    A. S. Bolgar, V. F. Litvinenko: Thermodynamic Properties of Nitrides ( Naukova Dumka, Kiev 1980 ) 282 pp. (in Russian)Google Scholar
  32. 32.
    A. N. Kornilov, N. V. Chelovskaya, V. I. Zhelankin, G. P. Shveikin• Enthalpies of formation of hafnium carbides, J. Chem. Thermodyn. 9, 629–642 (1977)CrossRefGoogle Scholar
  33. 33.
    S. Z. Nazarova, A. I. Gusev: Stoichiometric Solid Solutions of Niobium and Tantalum Carbides and Their Properties ( Ural Scientific Centre, Sverdlovsk 1987 ) 63 pp. (in Russian)Google Scholar
  34. 34.
    I. Barin: Thermochemical Data of Pure Substance, 3rd ed. (VCH, Weinheim 1995) 1880 pp. 444Google Scholar
  35. 35.
    N. M. Volkova, P. V. Geld: Temperature dependencies of enthalpy of vanadium carbide, Trudy Inst. Khimii Ural Fil. Akad. Nauk SSSR 14, 41–46 (1967) (in Russian)Google Scholar
  36. 36.
    A. G. Turchanin, E. A. Guseva, V. V. Morozov, A. S. Bolgar, V.V. Fesenko: Enthalpy and heat capacity of nonstoichiometric vanadium monocarbides at high temperatures, Izv. AN SSSR. Neorgan. Materialy 10, 1619–1622 (1974) (in Russian)Google Scholar
  37. 37.
    V. N. Lipatnikov, W. Lengauer, P. Ettmayer, E. Keil, G. Groboth, E. Kny: Effects of vacancy ordering on structure and properties of vanadium carbide, J. Alloys Comp. 261, 192–197 (1997)CrossRefGoogle Scholar
  38. 38.
    C. E. Wicks, F. E. Block: Thermodynamic Properties of 65 Elements, Their Oxides, Halides, Carbides and Nitrides (US Bureau of Mines, US Government Printing Office, Washington 1963 ) 240 pp.Google Scholar
  39. 39.
    R. F. Voitovich: Refractory Compounds: Thermodynamic Characteristics/Handbook ( Naukova Dumka, Kiev 1971 ) 220 pp. (in Russian)Google Scholar
  40. 40.
    V. P. Glushko (Ed.): Thermodynamic Properties of Individual Substances/Handbook in 4 volumes (Nauka, Moscow) II book 2 (1979) 340 pp.; IV book 2 (1982) 560 pp. (in Russian)Google Scholar
  41. 41.
    H. A. Wriedt, J. L. Murray: The nitrogen—titanium system, Bull. Alloy Phase Diagrams 8, 378–388 (1987)CrossRefGoogle Scholar
  42. 42.
    H. Othani, M. Hillert: Thermodynamic assesment of the Ti—N system, CALPHAD: Comp. Coupl. Phase Diagrams and Thermochem. 14, 289–306 (1990)CrossRefGoogle Scholar
  43. 43.
    Gusev A.I., Rempel A.A. Phase diagrams for Ti—C and Ti—N systems and atomic ordering of nonstoichiometric titanium carbide and nitride, Doklady Akademii Nauk 332 717–721 (1993) (in Russian). (Engl. transl.: Doklady Chemistry 332 456–461 (1993))Google Scholar
  44. 44.
    J. L. Murray: The C—Ti system, in Phase diagrams of Binary Titanium Alloys, J. L. Murray (Ed.) ( ASM Intern. Publ., Metals Park, Ohio 1987 ) pp. 47–51Google Scholar
  45. 45.
    M. Enomoto: The C—Ti—V system (carbon-titanium-vanadium), J. Phase Equilibria 17, 237–247 (1996)CrossRefGoogle Scholar
  46. 46.
    S. Jonsson: Phase relations in quaternary hard materials, Ph.D. Thesis, Royal Institute of Technology, Stockholm (Sweden) (1993) 18 pp.Google Scholar
  47. 47.
    H. J. Seifert, H. L. Lukas, G. Petzow: Thermodynamic optimization of the Ti—C system, J. Phase Equilibria 17, 24–35 (1996)CrossRefGoogle Scholar
  48. 48.
    H. Goretzki: Neutron diffraction studies of titanium-carbon and zirconium-carbon alloys, Phys. Stat. Sol. 20, K141 — K143 (1967)CrossRefGoogle Scholar
  49. 49.
    I. Karimov, V. T. Em, I. Khidirov, I. S. Latergaus: Neutron diffraction investigation of ordering in titanium and zirconium carbides, Izv. AN Uzb. SSR. Seriya Fiz. Mat. Nauk No 4, 81–83 (1979) (in Russian)Google Scholar
  50. 50.
    M. P. Arbuzov, B. V. Khaenko, E. T. Kachkovskaya, S. Ya. Golub: X-ray study of titanium carbide in homogeneity region, Ukrain. Fiz. Zh. 19, 497–501 (1984) (in Russian)Google Scholar
  51. 51.
    V.T. Em, I. A. Karimov, V. F. Petrunin, I. Khidirov, I. S. Latergaus, A. G. Merzhanov, I. P. Borovinskaya, V. K. Prokudina: Neutron diffraction study of ordering in titanium carbides, Kristallografiya 20, 320–323 (1975) (in Russian)Google Scholar
  52. 52.
    A. Sh. Remeev, I. Karimov: Neutron diffraction study of kinetics of structural phase transition, Izv. AN Uzb. SSR. Seriya Fiz. Mat. Nauk No 2, 87–88 (1986) (in Russian)Google Scholar
  53. 53.
    N. Lorenzelli, R. Caudron, J. P. Landesman, C. H. de Novion: Influence of the ordering of carbon vacancies on the electronic properties of TiCo.625, Solid State Commun. 59, 765–769 (1986)Google Scholar
  54. 54.
    B. V. Khaenko, V. V. Kukol’: Real structure of ordering of titanium carbide, Kristallografiya 34, 1513–1517 (1989) (in Russian)Google Scholar
  55. 55.
    V. Moisy-Maurice: Structure atomique des carbures non-stoechiometriques de metaux de transition, Rapport CEA-R-5127 (Commissariat à l’Energie Atomique, Gif-sur-Yvette (France) 1981 ) 184 pp.Google Scholar
  56. 56.
    B. V. Khaenko, V. V. Kukol’, O. A. Gnatetskii, S. V. Sirichenko: Structures of ordering of monocarbides of IV group transition metals, Poroshkovaya Metallurgiya No 6, 63–68 (1990) (in Russian)Google Scholar
  57. 57.
    V. Moisy-Maurice, N. Lorenzelli, C. H. de Novion, P. Convert: High temperature neutron diffraction study of the order-disorder transition in TiC1_, Acta Metall. 30, 1769–1779 (1982)CrossRefGoogle Scholar
  58. 58.
    V. N. Lipatnikov, A. A. Rempel, A. I. Gusev: Atomic ordering and hardness of nonstoichiometric titanium carbide, Int. J. Refract. Met. Hard Mater. 15, 61–64 (1997)CrossRefGoogle Scholar
  59. 59.
    V. Moisy-Maurice, C. H. de Novion, A. N. Christensen, W. Just: Elastic diffuse neutron scattering study of the defect structure of TiCo.76 and NbC073, Solid State Commun. 39, 661–665 (1981)CrossRefGoogle Scholar
  60. 60.
    J. P. Landesman, G. Treglia, P. Turchi, F. Ducastelle: Electronic structure and pairwise interactions in substoichiometric transition metal carbides and nitrides, J. Physique (France) 46, 1001–1015 (1985)CrossRefGoogle Scholar
  61. 61.
    T. Priem, B. Beuneu, C. H. de Novion, J. Chevrier, F. Livet, A. Finel, S. Lefevbre: Short-range order and static displacements in non-stoichiometric transition metal carbides and nitrides, Physica B 156–157, 47–49 (1989)CrossRefGoogle Scholar
  62. 62.
    P. C. Clapp, S. C. Moss: Correlation functions of disordered binary alloys, Phys. Rev. 142, 418–427 (1966)CrossRefGoogle Scholar
  63. 63.
    R. Fletcher, M. J. D. Powell: A rapidly convergent descent method for minimixation, The Computer J. 6, 163–168 (1963)CrossRefGoogle Scholar
  64. 64.
    F. Livet: Linearized inverse Monte Carlo method for applied to Ni3Fe, Acta Metall. 35, 2915–2919 (1987)CrossRefGoogle Scholar
  65. 65.
    M. Kurata, R. Kikuchi, T. Watari: Theory of cooperative phenomena. Detailed discussions of the cluster variation method, J. Chem. Phys. 21, 434–448 (1953)CrossRefGoogle Scholar
  66. 66.
    J. Hijmans, J. de Boer: Approximation method for order-disorder problem, Physica 21, 471–516 (1955)CrossRefGoogle Scholar
  67. 67.
    R. Kikuchi: The cluster-variation method, J. Physique Colloq. (France) 38, C7–307—C7–313 (1977)Google Scholar
  68. 68.
    A. Find: Contribution à l’étude des effets d’ordre dans le cadre du modèle d’Ising: états de base et diagrammes de phase, Ph.D. Thesis, Université Pierre et Marie Curie, Paris (France ) (1987)Google Scholar
  69. 69.
    N. V. Dzhalabadze, B. G. Eristavi, N. I. Maisuradze, E. R. Kuteliya: Structure of crystalline phases in Ti—C thin films, Fiz. Metall. Metalloved. 86, 85–92 (1998) (in Russian). (Engl. transl.: Phys. Met. Metallogr. 86, 59–64 (1998))Google Scholar
  70. 70.
    W. Lengauer, S. Binder, K. Aigner, P. Ettmayer, A. Guillou, J. Debuigne: Solid state properties of group IVb carbonitrides, J. Alloys Comp. 217, 137–147 (1995)CrossRefGoogle Scholar
  71. 71.
    V. N. Lipatnikov, A. Kottar, L. V. Zueva, A. I. Gusev: Disorder—order phase transformations and electrical resistivity of a nonstoichiometric titanium carbide, Fiz. Tverd. Tela 40, 1332–1340 (1998) (in Russian). (Engl. transl.: Physics of the Solid State 40, 1211–1218 (1998)Google Scholar
  72. 72.
    A. N. Emel’yanov: Features of order—disorder phase transition in nonstoichiometric carbides of transition metals, Fiz. Tverd. Tela 38, 3678–3682 (1996) (in Russian)Google Scholar
  73. 73.
    V. N. Lipatnikov, A. I. Gusev: Effect of ordering on the structure and specific heat of nonstoichiometric titanium carbide, Pis’ma v ZhETF 69, 631–637 (1999) (in Russian). (Engl. transl.: JETP Letters 69, 669–675 (1999))Google Scholar
  74. 74.
    V. N. Lipatnikov, A. I. Gusev: High-temperature heat capacity and order—disorder phase transformations in nonstoichiometric titanium carbide, Phys. Stat. Sol. (b) 212, R11 — R12 (1999)CrossRefGoogle Scholar
  75. 75.
    A. N. Emel’yanov: Temperature conductivity of nonstoichiometric titanium carbide in the region of order—disorder phase transition, Teplofizika Vysok. Temp. 28, 269–278 (1990) (in Russian)Google Scholar
  76. 76.
    A. V. Karpov, V.P. Kobyakov, E.A. Chernomorskaya: Dilatation of nonstoichiometric titanium carbide in the region of order-disorder phase transition, Neorgan. Materialy 31, 655–659 (1995) (in Russian)Google Scholar
  77. 77.
    A. V. Karpov, V. P. Kobyakov: Order—disorder phase transition in TiCo 55 Teplofizika Vysok. Temp. 34, 965–968 (1996) (in Russian). (Engl. transi.: High Temp. 34, 950953 (1996))Google Scholar
  78. 78.
    B. C. Guo, K. P. Kerns, A. W. Castleman: Ti8C12-metallo-carbohedrenes: a new class of molecular clusters?, Science 255, 1411–1413 (1992)CrossRefGoogle Scholar
  79. 79.
    A. V. Eletskii, B. M. Smirnov: Fullerenes and carbon structures, Uspekhi Fiz. Nauk 165, 977–1009 (1995) (in Russian)CrossRefGoogle Scholar
  80. 80.
    B. C. Guo, S. Wei, J. Purnell, S. Buzza, A. W. Castleman: Metallo-carbohedrenes [M8C12 (M = V, Zr, Hf, and Ti)]: a class of stable molecular cluster ions, Science 256, 515–516 (1992)CrossRefGoogle Scholar
  81. 81.
    S. Wei, B. C. Guo, J. Purnell, S. Buzza, A. W. Castleman: Metallocarbohedrenes as a class of stable neutral clusters: formation mechanism of M8C12 (M = Ti and V), J. Phys. Chem. 96, 4166–4168 (1992)CrossRefGoogle Scholar
  82. 82.
    J. S. Pilgrim, M.A.Duncan: Metallo-carbohedrenes: chromium, iron, and molybdenum analogues, J. Amer. Chem. Soc. 115, 6958–6961 (1993)CrossRefGoogle Scholar
  83. 83.
    S. Wei, B. C. Guo, H. T. Deng, K. Kerns, J. Purnell, S. Buzza, A. W. Castleman: Formation of metcars and face-centered cubic structures: thermodynamically or kinetically controlled?, J. Amer. Chem. Soc. 116, 4475–4476 (1994)CrossRefGoogle Scholar
  84. 84.
    M. Methfessel, M. van Schilfgaarde, S. Scheffler: Electronic structure and bonding in the metallocarbohedrene Ti8C12, Phys. Rev. Lett. 70, 29–32 (1993)CrossRefGoogle Scholar
  85. 85.
    B. V. Reddy, S. N. Khanna, P. Jena: Electronic, magnetic, and geometric structure of metallo-carbohedrenes, Science 258, 1640–1643 (1992).CrossRefGoogle Scholar
  86. 86.
    S. N. Khanna, B. V. Reddy: Geometry, stability and properties of metallocarbohedrenes, Comput. Mater. Sci. 2, 638–642 (1994)Google Scholar
  87. 87.
    J. H. Weaver, J. L. Martins, T. Komeda, Y. Chen, T. R. Ono, G. H. Kroll, N. Troullier, R. E. Haufler, R. E. Smalley: Electronic structure of solid sixty-atom carbon (C6o): experiment and theory, Phys. Rev. Lett. 66, 1741–1744 (1991)CrossRefGoogle Scholar
  88. 88.
    S. Saito, A. Oshiyama: Cohesive mechanism and energy bands of a solid of carbon sixty-atom molecules, Phys. Rev. Lett. 66, 2637–2640 (1991)CrossRefGoogle Scholar
  89. 89.
    B. V. Khaenho: Order in cubic carbides and nitrides of transition metals of groups IV and V, Izv. AN SSSR. Neorgan. Materialy 15, 1952–1960 (1979) (in Russian). (Engl. transl.: Inorganic Materials 15, 1535–1543 (1979))Google Scholar
  90. 90.
    N. Obata, N. Nakasawa: Superlattice formation in zirconium-carbon system, J. Nucl. Mater. 60, 39–42 (1976)CrossRefGoogle Scholar
  91. 91.
    R. Lorenzelli, I. de Dieuleveult: Existence d’une surstructure dans le carbure de thorium sous-stoechiometrique: ThCo.76, J. Nucl. Mater. 29, 349–353 (1969)CrossRefGoogle Scholar
  92. 92.
    E. Rudy: Compendium of Phase Diagram Data, Final Tech. Report AFML TR-65–2. Part V (Metals and Ceramics Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base (Ohio) 1969 ) 735 pp.Google Scholar
  93. 93.
    A. I. Gusev: Structural stability boundaries for nonstoichiometric compounds, Phys. Stat. Sol. (a) 111, 443–450 (1989)CrossRefGoogle Scholar
  94. 94.
    A. N. Zyryanova, S. Z. Nazarova, AA. Gusev: Magnetic susceptibility anomaly as evidence for ordering of nonstoichiometric hafnium carbide HfCy, Doklady Akad. Nauk 359, 348–353 (1998) (in Russian). (Engl. transi.: Doklady Phys. Chem. 359, 9196 (1998))Google Scholar
  95. 95.
    A. N. Zyryanova, A. I. Gusev: Magnetic susceptibility and ordering in nonstoichiometric hafnium carbide, Zh. Fiz. Khimii 72, 2234–2242 (1998) (in Russian). (Engl. transi.: Russ. J. Phys. Chem. 72, 3034–2041 (1998))Google Scholar
  96. 96.
    A. I. Gusev, A. N. Zyryanova: Atomic-vacancy ordering and magnetic susceptibility of nonstoichiometric hafnium carbide, Pis’ma v ZhETF 69, 2096–3001 (1999) (in Russian). (Engl. transi.: JETP Letters 69, 324–329 (1999))Google Scholar
  97. 97.
    J. Billingham, P. S. Bell, M. H. Lewis: Superlattice with monoclinic symmetry based on compounds V6C5, Philosoph. Mag. 25, 661–671 (1972)Google Scholar
  98. 98.
    T. Athanassiadis, N. Lorenzelli, C. H. de Novion: Diffraction studies of the order-disorder transformation in V8C7, Ann. Chim France 12, 129–142 (1987)Google Scholar
  99. 99.
    O. N. Carlson, A. N. Ghaneya, J. F. Smith: The vanadium—carbon system, Bull. Alloy Phase Diagrams 6, 115–124 (1985)CrossRefGoogle Scholar
  100. 100.
    W. Huang: An assessment of the V—C system, Z. Metallkunde 82, 174–181 (1991)Google Scholar
  101. 101.
    A. I. Gusev: Phase diagram of V—C mixtures, Doklady Akademii Nauk 365, 644–648 (1999) (in Russian). (Engl. transl.: Doklady Phys. Chem. 365, 107–111 (1999))Google Scholar
  102. 102.
    A. I. Gusev: A phase diagram of the vanadium—carbon system taking into account ordering in nonstoichiometric vanadium carbide, Zh. Fiz. Khimii 74, 600–606 (2000) (in Russian). (Engl. transi.: Russ. J. Phys. Chem. 74, 510–516 (2000))Google Scholar
  103. 103.
    M. P. Arbuzov, B. V. Khaenko, V. G. Fak, Yu. F. Nosachev: Study of ordering process in alloys on a base of vanadium monocarbide, Ukrain. Fiz. Zh. 22, 291–297 (1977) (in Russian)Google Scholar
  104. 104.
    N. M. Volkova, P. V. Geld, S. I. Alyamovskii: Phase transformation of highest vanadium carbide, Zh. Neorgan Khimii 10, 1758–1759 (1965) (in Russian). (Engl. transi.: Russ. J. Inorg. Chem. 10, 960–961 (1965))Google Scholar
  105. 105.
    G. H. Emmons, W. S. Williams: Thermodynamics of order-disorder transformations in vanadium carbide, J. Mater. Science 18, 2589–2602 (1983)CrossRefGoogle Scholar
  106. 106.
    L. W. Shacklette, W. S. Williams: Influence of order-disorder transformations on the electrical resistivity of vanadium carbide, Phys. Rev. B 7, 5041–5053 (1973)CrossRefGoogle Scholar
  107. 107.
    K. Hiraga: Vacancy ordering in vanadium carbides based on V6C5, Philosoph. Mag. 27, 1301–1311 (1973)Google Scholar
  108. 108.
    H. Wiesenberger, W. Lengauer, P. Ettmayer: Reactive diffusion and phase equilibria in the V—C, Nb—C, Ta—C and Ta—N systems, Acta Mater. 46, 651–666 (1998)CrossRefGoogle Scholar
  109. 109.
    K. Yvon, W. Rieger, H. Nowotny: Die Kristallstrukture V2C, Monatsh. Chem. 97, 689–694 (1966)Google Scholar
  110. 110.
    J. F. Smith: The C—V system, in Phase Diagrams of Binary Vanadium Alloys, J. F. Smith (Ed.) ( ASM Intern. Publication, Materials Park (Ohio) 1989 ) pp. 33–42Google Scholar
  111. 111.
    J. F. Smith, O. N. Carlson, R. R. de Avillez: The niobium—carbon system, J. Nucl. Mater. 148, 1–16 (1987)CrossRefGoogle Scholar
  112. 112.
    W. Huang: Thermodynamic evaluation of Nb-C system, Mater. Sci. Technol. 6, 687694 (1990)Google Scholar
  113. 113.
    E. K. Storms, B. Calcen, A. Yencha: The vaporization behavior of the defect carbides. Part I. The Nb-C system, High Temp. Science 1, 430–455 (1969)Google Scholar
  114. 114.
    J. Billingham, P. S. Bell, M. H. Lewis: Vacancy short-range order in substoichiometric transition metal carbides and nitrides with the NaC1 structure. Electron diffraction studies of short-range ordered compounds, Acta Crystallogr. A 28, 602–606 (1972)Google Scholar
  115. 115.
    J. P. Landesman, A. N. Christensen, C. H. de Novion, N. Lorenzelli, P. Convert: Order-disorder transition and structure of the ordered vacancy compound Nb6C5: powder neutron diffraction studies, J. Phys. C: Solid State Phys. 18, 809–823 (1985)CrossRefGoogle Scholar
  116. 116.
    A. I. Gusev, A. A. Rempel: Ordering in the carbon sublattice of nonstoichiometric niobium carbide, Fiz. Tverd. Tela 26, 3622–3627 (1984) (in Russian). (Engl. transl.: Sov. Physics - Solid State 26, 2178–2181 (1984))Google Scholar
  117. 117.
    A. A. Rempel, A. I. Gusev: Order-disorder phase transition in nonstoichiometric niobium carbide, Kristallografiya 30, 1112–1115 (1985) (in Russian). (Engl. transi.: Sov. Physics - Crystallography 30, 648–650 (1985))Google Scholar
  118. 118.
    A. I. Gusev, A. A. Rempel: Order-disorder phase transition channel in niobium carbide, Phys. Stat. Sol. (a) 93, 71–80 (1986)CrossRefGoogle Scholar
  119. 119.
    J. D. Venables, M. H. Meyerhoff: Ordering effect in NbC and TaC, in Solid State Chemistry, Proc. of 5th Intern. Mater. Res. Symp. (NBS Special Publ. 364 ). ( NBS Publ., Berkeley (California) 1972 ) pp. 583–590Google Scholar
  120. 120.
    M. H. Lewis, J. Billingham, P. S. Bell: Non-stoichiometry in ceramic compounds, in Solid State Chemistry, Proc. of 5th Intern. Mater. Res. Symp. (NBS Special Publ. 364 ). ( NBS Publ., Berkeley (California) 1972 ) pp. 1084–1114Google Scholar
  121. 121.
    A. A. Rempel, A. I. Gusev: Ordering in Nonstoichiometric Niobium Monocarbide ( Urals Scientific Centre, Sverdlovsk 1983 ) 68 pp. (in Russian)Google Scholar
  122. 122.
    A. A. Rempel, A. I. Gusev, V. G. Zubkov, G. P. Shveikin: Structure of ordered niobium carbide Nb6C5, Doklady AN SSSR 275, 883–887 (1984) (in Russian). (Engl. transi.: Sov. Physics Doklady 29, 257–259 (1984))Google Scholar
  123. 123.
    A. N. Christensen: Vacancy order in Nb6C5, Acta Chem. Scand. A 39, 803–804 (1985)CrossRefGoogle Scholar
  124. 124.
    B. V. Khaenko, O. P. Sivak: Structure of order of niobium monocarbide, Kristallografiya 35, 1110–1115 (1990) (in Russian)Google Scholar
  125. 125.
    L. C. Dy, W. S. Williams: Resistivity, superconductivity and order-disorder transformations in transition metal carbides and hydrogen-doped carbides, J. Appl. Phys. 53, 8915–8927 (1982)CrossRefGoogle Scholar
  126. 126.
    J.-P. Landesman. Etude de la stabilité de phases ordonnées dans les carbures et nitrures sous-stoechiometriques de metaux de transition, Rapport CEA-R-5342 (Commissariat à l’Energie Atomique, Centre d’Etudes Nucléaires de Fontenay-aux-Roses, Gif-sur-Yvette, 1986 ) 176 pp.Google Scholar
  127. 127.
    A. I. Gusev, A. A. Rempel: A study of the atomic ordering in the niobium carbide using the magnetic susceptibility method, Phys. Stat. Sol. (a) 84, 527–534 (1984)CrossRefGoogle Scholar
  128. 128.
    K. Yvon, E. Parthe: Crystal structure of the 4--V, Nb and Ta carbides, Acta Crystallogr. B 26, 149–152 (1970)Google Scholar
  129. 129.
    A. A. Rempel, V. N. Lipatnikov, A. I. Gusev: The superstructure in nonstoichiometric tantalum carbide, Doklady AN SSSR 310, 878–882 (1990) (in Russian). (Engl. Trans!.: Sov. Physics Doklady 35, 103–106 (1990))Google Scholar
  130. 130.
    A. I. Gusev, A. A. Rempel, V. N. Lipatnikov: Incommensurate superlattice and superconductivity in tantalum carbide, Fiz. Tverd. Tela 33 2298–2305 (1991) (in Russian). (Engl. transl.: Soy. Physics — Solid State 33 1295–1299 (1991))Google Scholar
  131. 131.
    A. I. Gusev, A. A. Rempel, V. N. Lipatnikov: Incommensurate ordered phase in nonstoichiometric tantalum carbide, J. Phys.: Condens. Matter 8, 8277–8293 (1996)CrossRefGoogle Scholar
  132. 132.
    V. N. Lipatnikov, A. A. Rempel, A. I. Gusev: The influence of ordering of the vacancies on the magnetic susceptibility of tantalum carbide, Zh. Neorgan. Khimii 33, 1860–1863 (1988) (in Russian). (Engl. transl.: Russ. J. Inorg. Chem. 33, 1058–1059 (1988))Google Scholar
  133. 133.
    A. I. Gusev, A. A. Rempel, V. N. Lipatnikov: Magnetic susceptibility and atomic ordering in tantalum carbide, Phys. Stat. Sol. (a) 106, 459–466 (1988)CrossRefGoogle Scholar
  134. 134.
    A. I. Gusev, A. A. Rempel, V. N. Lipatnikov: Thermodynamic model of atomic ordering. 5. Specific heat of non-stoichiometric compounds in different structural states, Zh. Fiz Khimii 64 2343–2348 (1990) (in Russian). (Engl. transl.: Russ. J. Phys. Chem. 64 1265–1267 (1990))Google Scholar
  135. 135.
    A. I. Gusev, A. A. Rempel, V. N. Lipatnikov: Heat capacity of niobium and tantalum carbides NbC, and TaCy in disordered and ordered states below 300 K, Phys. Stat. Sol. (b) 194, 467–482 (1996)CrossRefGoogle Scholar
  136. 136.
    H. A. Wriedt, J. L. Murray: The N—Ti (nitrogen—titanium) system, Bull. Alloy Phase Diagrams 8, 378–388 (1987)CrossRefGoogle Scholar
  137. 137.
    W. Lengauer, P. Ettmayer: Some aspects of the formation of e-Ti2N, Revue de Chimie Miner. 24, 707–713 (1987)Google Scholar
  138. 138.
    W. Lengauer, P. Ettmayer: Investigations of phase equilibria in the Ti — N and Ti—Mo—N systems, Mater. Sci. Engineer. A 105–106, 257–263 (1988)CrossRefGoogle Scholar
  139. 139.
    W. Lengauer: The temperature gradient diffusion couple technique: an application of solid-solid phase reactions for phase diagram imaging, J. Solid State Chem. 91, 279285 (1991)Google Scholar
  140. 140.
    W. Lengauer: The titanium—nitrogen system: a study of phase reactions in the sub-nitride region by means of diffusion couples, Acta Metall. Mater. 39, 2985–2995 (1991)Google Scholar
  141. 141.
    W. Lengauer, P. Ettmayer: Phase diagram imaging by means of temperature-gradient diffusion couples, J. Phase Equilibria 14, 162–166 (1993)CrossRefGoogle Scholar
  142. 142.
    C. Lobier, J. P. Marcon: Etude et structure d’une nouvelle phase du sous-nitrure de titane Ti2N, Compt. Rend. Acad. Sci. Paris. Ser. C 268, 1132–1135 (1969)Google Scholar
  143. 143.
    S. Nagakura, T. Kusunoki: Structure of titanium nitride TiNX studied by electron diffraction and microscopy, J. Appl. Crystallogr. 10, 52–56 (1977)CrossRefGoogle Scholar
  144. 144.
    A. N. Christensen, A. Alamo, J. P. Landesman: Structure of vacancy-ordered titanium heminitride 6-Ti2N by powder neutron diffraction, Acta Crystallogr. C 41, 1009–1011 (1985)Google Scholar
  145. 145.
    A. Alamo, C. H. de Novion: Ordered titanium heminitride Ti2N, in Proc. 7th Intern. Conf. Solid Compounds of the Transition Elements,Grenoble, France, 1982, Paper II AlGoogle Scholar
  146. 146.
    E. Etchessahar, Sohn Yong-Un, M. Harmelin, J. Debuigne: The Ti-N system: kinetic, calorimetric, structural and metallurgical investigations of the 8-TiN0.51 phase, J. Less-Common Met. 167, 261–281 (1991)CrossRefGoogle Scholar
  147. 147.
    W. Lengauer, P. Ettmayer: Thermal decomposition of e-Ti2N and S’-TiNo.so investigated by high-temperature x-ray diffraction, High Temp. — High Pressure 19, 673–676 (1987)Google Scholar
  148. 148.
    W. Lengauer, P. Ettmayer: Recent advances in the field of transition-metal refractory nitrides, High Temp. — High Pressure 22, 13–24 (1990)Google Scholar
  149. 149.
    W. Hume-Rothery, G. V. Raynor: The Structure of Metals and Alloys (Inst. of Metals, London 1955 ) 460 pp.Google Scholar
  150. 150.
    A. I. Gusev, G. P. Shveikin• Formation of solid solutions by isomorphic carbides, nitrides, oxides, and borides of transition metals of group W and V, Izv. AN SSSR. Neorgan. Materialy 10, 2144–2147 (1974) (in Russian). (Engl. transl.: Inorganic Materials 10, 1840–1843 (1974))Google Scholar
  151. 151.
    A.G. Knapton: Niobium and tantalum alloys, J. Less-Common Met. 2, 113–124 (1960)CrossRefGoogle Scholar
  152. 152.
    A. I. Gusev, G. P. Shveikin• Energy of elastic lattice deformation in the formation of solid solutions of transition metal carbides and nitrides, Izv. AN SSSR. Neorgan. Materialy 12, 1565–1568 (1976) (in Russian). (Engl transl.: Inorganic Materials 12, 1283–1286 (1976)Google Scholar
  153. 153.
    R. Kieffer, H. Nowotny, A. Neckel, P. Ettmayer, L. Usner: Zur Entmischung von kubischen Mehrstoffkarbiden, Monatsh. Chem. 99, 1020–1027 (1968)Google Scholar
  154. 154.
    A. I. Gusev: Influence of structural defects on the character of the mutual solubility of high-melting compounds of variable composition, Izv. AN SSSR. Neorgan. Materialy 19, 1319–1324 (1983) (in Russian). (Engl. transl.: Inorganic Materials 19, 1183–1188 (1983))Google Scholar
  155. 155.
    A. I. Gusev: Calculation of phase diagrams of pseudobinary systems based on high-melting carbides of titanium, zirconium, hafnium, and vanadium, Izv. AN SSSR. Neorgan. Materialy 20, 1132–1137 (1984) (in Russian).Google Scholar
  156. 156.
    A. I. Gusev: Phase diagrams of the pseudobinary TiC—NbC, TiC—TaC, ZrC—NbC, ZrC—TaC, and HIC—TaC carbide systems, Zh. Fiz. Khimii 59, 579–584 (1985) (in Russian). (Engl. transl.: Russ. J. Phys. Chem. 59, 336–340 (1985))Google Scholar
  157. 157.
    A. I. Gusev: Prediction and calculation of phase diagrams of pseudobinary systems on a base of refractory compounds of transition metals, in Calculations and Experimental Methods of Constructing of Phase Diagrams ( Nauka, Moscow 1985 ) pp. 42–47 (in Russian)Google Scholar
  158. 158.
    A. I. Gusev: Formation of solid solutions by transition-metal carbides and nitrides and calculation of their phase diagrams, in Vortrage 3, VIII Intern. Pulvermet. Tagung. (Zentralinstitut Festkörperphysik and Werkstofforschung, Dresden (GDR) 1985 ) pp. 169–179Google Scholar
  159. 159.
    L. Kaufman, H. Bernstein: Computer Calculation of Phase Diagrams ( Academic Press, New York and London 1970 ) 334 pp.Google Scholar
  160. 160.
    A. I. Gusev: Phase diagram of the Ti—B—C system in the temperature range 3003500 K, Doklady Akademii Nauk 350, 209–212 (1996) (in Russian). (Engl. transl.: Doklady Phys. Chem. 350, 230–233 (1996))Google Scholar
  161. 161.
    A. I. Gusev: Phase equilibria in the ternary Ti—B—C system, Zh. Fiz. Khimii 71, 11771181 (1997) (in Russian). (Engl. transl.: Russ. J. Phys. Chem. 71, 1049–1053 (1997))Google Scholar
  162. 162.
    A. I. Gusev: Phase equilibria in the ternary system titanium—boron—carbon: the sections TiCY TiB2 and B4CY TiB2, J. Solid State Chem. 133, 205–210 (1997)CrossRefGoogle Scholar
  163. 163.
    S. V. Rempel, A. I. Gusev: Decomposition of solid solutions in ZrC—NbC system, Doklady Akademii Nauk 367, 85–89 (1999) (in Russian). (Engl. transl.: Doklady Phys. Chem. 367, 187–191 (1999))Google Scholar
  164. 164.
    S. V. Rempel, A. A. Rempel, A. I. Gusev: Latent decomposition regions in the model of subregular solutions: the ZrC—NbC system, Zh. Fiz. Khimii 74, 412–417 (2000) (in Russian). (Engl. transl.: Russ. J. Phys. Chem. 74, 341–346 (2000))Google Scholar
  165. 165.
    A. I. Gusev, G. P. Shveikin: Thermodynamic calculation of the phase diagrams of the VC0.88—NbC, VC0.88—TaC, VC088—HfC, NbC—TaC, and NbC—HfC systems, Zh. Fiz. Khimii 58, 2163–2167 (1984) (in Russian) (Engl. transi.: Russ. J. Phys. Chem. 58, 1322–1325 (1984))Google Scholar
  166. 166.
    R. Kieffer: Preparation and properties of interstitial compounds, J. Inst. Metals 97, 164–171 (1969)Google Scholar
  167. 167.
    E. V. Fedorov, R. A. Andrievski: Thermodynamic stability of carbide solid solutions, Izv. AN SSSR. Neorgan. Materialy 15, 454–457 (1979) (in Russian)Google Scholar
  168. 168.
    Ya. S. Umanski, A. S. Muller: Study of short-range order in high-melting compounds. Report I, Izv. Vyssh. Ucheb. Zaved. Chernaya Metallurgiya No 7, 130–133 (1969) (in Russian)Google Scholar
  169. 169.
    Ya. S. Umanski, A. S. Muller: Study of short-range order in high-melting compounds. Report II, Izv. Vyssh. Ucheb. Zaved. Chernaya Metallurgiya No 1, 128–131 (1970) (in Russian)Google Scholar
  170. 170.
    V. I. Iveronova, A. A. Katsnelson: Short-Range Order in Solid Solutions ( Nauka, Moscow 1977 ) 256 pp. (in Russian)Google Scholar
  171. 171.
    A. K. Shurin, N. A. Razumova, G. P. Dmitrieva, E. L. Handros: Phase diagram of the Ni—ZrC—TaC system, Poroshkovaya Metallurgia No 1, 56–61 (1987) (in Russian)Google Scholar
  172. 172.
    A. K. Shurin, G. P. Dmitrieva, N. A. Razumova, E. L. Handros: Phase diagram of the Ni—VC—NbC system, Poroshkovaya Metallurgia No 8, 67–69 (1987) (in Russian)Google Scholar
  173. 173.
    G. D. Milova, A. I. Gusev: A method of calculating the solubility in cryolite, Rasplavy No 5, 79–83 (1991) (in Russian). (Engl. transi.: Melts 5, 398–401 (1991))Google Scholar
  174. 174.
    A. I. Gusev: The ternary system titanium-boron-carbon: TiCy— TiB2 and B4C—TiB2 cross-sections, in 12th Intern. Symp. on Boron, Borides and Related Compounds, P. Rogl (Ed.), Proc. of the ISBB’96, 25–30 August 1996, Baden, Austria ( Universität Wien, Wien (Austria) 1996 ) p. 23Google Scholar
  175. 175.
    S. S. Ordan’yan, V. I. Unrod, A. I. Avgustinnik: Reaction in the system TiCx TiB2, Poroshkovaya Metallurgia No 9, 40–43 (1975) (in Russian)Google Scholar
  176. 176.
    H. Duschanek, P. Rogl, H. L. Lukas: A critical assessment and thermodynamic calculation of the boron-carbon-titanium (B—C—Ti) ternary system, J. Phase Equilibria 16, 46–60 (1995)CrossRefGoogle Scholar
  177. 177.
    M. Schouler, M. Dicarroir, C. Bernard: Mise au point sur la topographie et les propriétés des systèmes metal-carbone-azote (M—C—N) et metal-carbone-bore (M—C—B), Rev. Intern. Hautes Temp. Refr. 20, 261–311 (1983)Google Scholar
  178. 178.
    P. Villars, A. Prince, H. Okamoto: Handbook of Ternary Alloy Phase Diagrams 5 (ASM Publication, Metals Park (Ohio) 1995 ) pp. 5373–5379Google Scholar
  179. 179.
    A. I. Gusev: Order—disorder transformations and phase equilibrium in strongly nonstoichiometric compounds, Uspekhi Fiz. Nauk 170, 3–40 (2000) (in Russian). (Engl. transl.: Physics —Uspekhi 43, 1–37 (2000))Google Scholar
  180. 180.
    A. A. Rempel, A. I. Gusev: Nanostructure and atomic ordering in vanadium carbide, Pis’ma v ZhETF 69, 436–442 (1999) (in Russian). (Engl. transi.: JETP Letters 69, 472–478 (1999))Google Scholar
  181. 181.
    A. A. Rempel, A. I. Gusev: Short-range order in ordered alloys and interstitial phases, Fiz. Tverd. Tela 32, 16–24 (1990) (in Russian). (Engl. transl.: Sov. Physics — Solid State 32, 8–13 (1990))Google Scholar
  182. 182.
    A. A. Rempel, A. I. Gusev: Short-range order in superstructures, Phys. Stat. Sol. (b) 160, 389–402 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Alexandr I. Gusev
    • 1
  • Andrej A. Rempel
    • 1
  • Andreas J. Magerl
    • 2
  1. 1.Ural Division of the Russian Academy of SciencesInstitute of Solid State ChemistryEkaterinburgRussia
  2. 2.Lehrstuhl für Kristallographie und StrukturphysikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations