Advertisement

The Springer Representations

  • Reinhardt Kiehl
  • Rainer Weissauer
Chapter
Part of the Ergebnisse der Mathematik und ihrer Grenzgebiete book series (MATHE3, volume 42)

Abstract

This chapter has its own bibliography.

Keywords

Vector Bundle Weyl Group Irreducible Character Unipotent Element Perverse Sheave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography for Chapter VI

  1. [A]
    Alekseevski A.V.: Component groups of centralizers of unipotent elements in semisimple algebraic groups, Trudy Tbiliss. Math. Inst. Razmadfze Akad. Gruzin SSR, 62 (1979), 5–27Google Scholar
  2. BBD] Analyse et Topologie sur les espaces singuliers I, Astérisque 100, 1982Google Scholar
  3. [Bb]
    Bourbaki N.: Groupes et Algèbres de Lie, Chap. 4, 5 et 6, Éléments de Mathematique 1968 Hermann, Paris; 1982 Masson, ParisGoogle Scholar
  4. [B-C]
    Bala P., Carter R.W.: Classes of unipotent elements in simple algebraic groups, Math. Proc. Cambridge Philos. Soc. I, 79 (1976), 401–425; II, 80 (1976), 1–18MathSciNetMATHGoogle Scholar
  5. [B-K]
    Borho W., Kraft H.: Uber Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comm. Meth. Hely. 54 (1976), 61–104MathSciNetCrossRefGoogle Scholar
  6. B–Ml] Borho W., MacPherson R.: Representation de groupes de Weyl et homology d’intersection pour la varietes nilpotent, C.R.A.S. t. 292 (27–4–1981), 707–710Google Scholar
  7. [B-M2]
    Borho W., MacPherson R.: Partial resolutions of nilpotent varieties, Analyse et Topologie sur les espaces singuliers II—III, Astérisque 101–102, 1983Google Scholar
  8. Bo] Borel A.: Linear Algebraic Groups, Benjamin 1969Google Scholar
  9. [B-R]
    Bardsley P., Richardson R.W.: Etale slices for algebraic transformation groups in characteristic p, Proc. London Math. Soc. 51 (1985), 295–317MathSciNetMATHGoogle Scholar
  10. Bryl] Brylinski J.L.: (Co-) homology d’intersection et faisceaux pervers, Sem. Bourbaki Exp. 585, Vol. 1981/82Google Scholar
  11. [Bry2]
    Brylinski J.L.: Transformations canoniques, Duality Projective Theorie de Lefschetz, Transformations de Fourier et Sommes Trigonometriques in Geometrie et Analyse Microlocales, Astérisque 140–141, 1986Google Scholar
  12. Cal] Carter: On the Representation Theory of finite groups of Lie Type, Encyclopedia of Math. Sciences Vol. 77, Algebra IX, Springer-VerlagGoogle Scholar
  13. [Ca2]
    Carter R.W.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley, London 1985MATHGoogle Scholar
  14. [CG]
    Chriss N., Ginzburg V.: Representation theory and complex geometry, Birkhäuser 1977Google Scholar
  15. [Cu]
    Curtis C.W.: Representations of Hecke algebras, asterisque 173 (1989)Google Scholar
  16. Del] Demazure M.: Invariants symmetriques entiers de groupes de Weyl et torsionGoogle Scholar
  17. Invent. Math. 21 (1973), 103–161Google Scholar
  18. [De2]
    Demazure M.: Desingularisation des Varietes de Schubert generalisées, Ann. scient. Ec. Norm. Sup. 4e serie t7 (1974)Google Scholar
  19. DG] Demazure M., Gabriel P.: Groupes Algébriques, Tome I, Masson Paris, North Holland AmsterdamGoogle Scholar
  20. [Gi]
    Ginzburg V.: Geometric methods in the representation theory of Hecke algebras and quantum groups. (Notes by Vladimir Baranovsky). In: Broer A. (ed.) et al., Representation theories and algebraic geometry. Proceedings of the NATO Advanced Study Institute, Montreal, Canada, July 28—August 8, 1997. Dordrecht: Kluwer Academic Publishers. NATO ASI Ser., Ser. C, Math. Phys. Sci. 514, 127–183 (1998)Google Scholar
  21. Hd-Str] Séminaire Heidelberg-Strasbourg, 1965/66; Groupes Algébriques Linéaires, Publ. I.R.M.A. StrasbourgGoogle Scholar
  22. Hu] Humphreys J.P.: Conjugacy Classes in semisimple algebraic groups, A.M.S. Math. Surveys and Monographs, Vol. 43Google Scholar
  23. [IL]
    Illusie L.: Deligne’s l-adic Fourier Transform, Proc. of Symposia in pure Math. Vol. 46, Part 2 (1987)Google Scholar
  24. [K]
    Kazhdan D., Proof of Springer’s hypothesis, Israel J. Math. 28 (1977), 272–286MathSciNetMATHGoogle Scholar
  25. [Ka-L]
    Katz M., Laumon G.: Transformation de Fourier et Majoration de Sommes Exponentielles, Publ. Math. I.H.E.S. 62, 1986Google Scholar
  26. [Ka-Lu]
    Kazhdan, Lusztig G.: A topological approach to Springer representations, Adv. in Math. 38 (1980)Google Scholar
  27. [Lul]
    Lusztig G.: Characters of Reductive Groups over a finite field, Ann. of Math. stud. (1984), Princeton University PressMATHGoogle Scholar
  28. [Lu2]
    Lusztig G.: Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1982), 169–178MathSciNetCrossRefGoogle Scholar
  29. [MV]
    Mirkovic I., Vilonen K.: Characteristic varietes of character sheaves, Invent. Math. 93, No. 2, (1988), 405–418MathSciNetMATHGoogle Scholar
  30. [Po]
    Pommerening K.: Ober die unipotenten Klassen reduktiver Gruppen. J. Algebra 49 (1977), 525–536, Teil II, J. Algebra 65 (1980), 373–398MathSciNetMATHCrossRefGoogle Scholar
  31. [S1]
    Springer T.A.: The unipotent variety of semisimple groups, Proc. Colloq. Algebr. Geometry Bombay 1968 (Tata Institute) 1969Google Scholar
  32. [S2]
    Springer T.A.: Construction of representations of Weyl groups, Invent. Math. 44, 1978Google Scholar
  33. [S3]
    Springer T.A.: On representations of Weyl groups, Proc. Hyderabad Conf. Alge- braic Groups (1991), 517–536Google Scholar
  34. S4] Springer T.A.: Quelques applications de la Cohomologie d’Intersection, Sem. Bourbaki Exp. 589, 1981/82Google Scholar
  35. S5] Springer T.A.: Linear Algebraic Groups, Sec. Ed. BirkhäuserGoogle Scholar
  36. [S6]
    Springer T.A.: Trigonometrical sums, Green functions of finite groups and representations of Weyl groups, Inv. Math. 36, (1976), 173–203MathSciNetMATHGoogle Scholar
  37. SGA3] SGA 3, Schémas en Groupes I—III, Springer lecture Notes volume 151–153Google Scholar
  38. [S11]
    Slodowy P.: Simple singularities and simple algebraic groups, Lect. Notes in Math. Vol. 815, Springer 1980Google Scholar
  39. [S12]
    Slodowy P.: Four lectures on simple groups and singularities, Comm. Math. Inst. Utrecht 1980Google Scholar
  40. S-St] Springer T.A., Steinberg R.: Conjugacy classes. In Borel et alii: Seminar on algebraic groups and related finite groups, Lecture Notes in Math. 1311 (1970), Springer VerlagGoogle Scholar
  41. [St]
    Steinberg R.: On the Desingularization of the unipotent variety, Inventiones math. 36, 209–224 (1976)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Reinhardt Kiehl
    • 1
  • Rainer Weissauer
    • 2
  1. 1.Institut für Mathematik und InformatikUniversität MannheimMannheimGermany
  2. 2.Mathematisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations