Skip to main content

Abstract

Macromolecular chemistry deals with substances having especially high molecular weights. Macromolecules or polymers consist of at least one hundred atoms linked in a chain-like order. Accordingly, the lower limit for the molecular weight of macromolecular substances is around 103 g/mol. Because of this high molecular weight macromolecules have properties quite different from those of low molecular weight substances. The influence of the molecular weight or, respectively, the length of the polymer chain can be seen very impressively in the case of polyethylene. While polyethylene waxes (molecular weight: a few thousand) have only low tensile strength, polyethylenes with molecular weights above one hundred thousand have substantially better mechanical properties and are used for the production of films, pipes and other performance products. Even higher values of impact strength and abrasion resistance are achieved with ultrahigh molecular weight polyethylenes (molecular weight of several millions) which enable these materials to be used in heavy-duty applications like skating floors and artificial hips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Literature on Macromolecules

1.4.1 Textbooks

  • P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca (1953)

    Google Scholar 

  • H. G. Elias, An Introduction to Polymer Science, Wiley, Weinheim (1997) H. G. Elias, Macromolecules, Plenum Press, New York (1984)

    Google Scholar 

  • U. Eisele, Introduction to Polymer Physics, Springer, Berlin, Heidelberg, New York (1990)

    Book  Google Scholar 

  • G. R. Strobl, The Physics of Polymers, 2nd edn, Springer, Berlin, Heidelberg, New York (1999)

    Google Scholar 

  • Sax’s Dangerous Properties of Industrial Materials, 10th edn, Wiley, New York (1999)

    Google Scholar 

1.4.2 Monographs and Handbooks

  • P. J. Flory, Statistical Mechanics of Chain Molecules, Interscience, New York (1969)

    Google Scholar 

  • D. W. van Krevelen, Properties of Polymers, Their Estimation and Correlation with Chemical Structure, 3rd edn, Elsevier, Amsterdam (1990)

    Google Scholar 

  • B. R. Gelin, Molecular Modeling of Polymer Structures and Properties, Carl Hanser, Munich, Vienna (1994)

    Google Scholar 

  • H. Dautzenberg, W. Jaeger, J. Kötz, B. Philipp, C. Seidel, D. Stscherbin, , Polyelectrolytes — Formation Characterization and Application, Carl Hanser, Munich, Vienna (1994)

    Google Scholar 

  • C. L. Rohn, Analytical Polymer Rheology — Structure, Processing, Property Relationship, Carl Hanser, Munich, Vienna (1995)

    Google Scholar 

  • I. M. Ward, Mechanical Properties of Solid Polymers, 2nd edn, John Wiley, New York (1983)

    Google Scholar 

  • A. E. Woodward, Understanding Polymer Morphology, Carl Hanser, Munich, Vienna (1995)

    Google Scholar 

  • J. Lal, J. E. Mark (Eds), Advances in Elastomers and Rubber Elasticity, Plenum, New York (1986)

    Google Scholar 

  • N. R. Legge, G. Holden, H. E. Schroeder (Eds), Thermoplastic Elastomers, Hanser, Munich, Vienna, New York (1987)

    Google Scholar 

  • P. J. Collings (Ed), Handbook of Liquid Crystals, Oxford University Press, Oxford (1997r)

    Google Scholar 

  • M. G. Northolt, D. J. Sikkema, Lyotropic Main Chain Liquid Crystal Polymers, Adv. Polym. Sci. 98, 119 (1990)

    Google Scholar 

  • J. E. Mark, N. M. Bikales, C. G. Overberger, G. Menges(Eds), Encyclopedia of Polymer Science and Engineering, vol. 1–19, Wiley, New York (1990)

    Google Scholar 

  • G. Allen, J. Bevington (Eds), Comprehensive Polymer Science, vol. 1–7, Pergamon Press, Oxford (1989)

    Google Scholar 

  • H. R. Kricheldorf(Ed), Handbook of Polymer Synthesis, Parts A and B, Marcel Dekker, New York, Basel, Hong Kong (1992)

    Google Scholar 

  • A. D. Schlüter, Synthesis of Polymers, Wiley-VCH, Weinheim (2000)

    Google Scholar 

  • P. Rempp, E. W. Merrill, Polymer Synthesis, Hüthig und Wepff Verlag, Basel, Heidelberg, New York (1991)

    Google Scholar 

  • J. Brandrup, E. H. Immergut, E. A. Grulke (Eds), Polymer Handbook, 4th edn, John Wiley and Sons, New York (1999)

    Google Scholar 

  • D. Braun, Simple Methods for Identification of Plastics, 3rd edn, Carl Hanser, Munich, Vienna (1996)

    Google Scholar 

  • W. Glenz, A Glossary of Plastics Terminology in Five Languages, 2nd edn, Carl Hanser, Munich, Vienna (1993)

    Google Scholar 

  • W. R. Sorenson, T. W. Campbell, Preparative Methods of Polymer Chemistry, Interscience Publ., New York (1968) (out of print)

    Google Scholar 

1.4.3 Laboratory Manuals

  • E. A. Collins, E. A. J. Bares, F. W. Billmeyer Jr., Experiments in Polymer Science, John Wiley and Sons (1973) (out of print)

    Google Scholar 

  • E. M. Mc Caffery, Laboratory Preparation for Macromolecular Chemistry, Mc Graw-Hill, New York (1978) (out of print)

    Google Scholar 

  • J. A. Moore(Ed), Polymer Syntheses, John Wiley and Sons, New York (1978)

    Google Scholar 

  • S. R. Sandler, W. Karo(Eds), Polymer Syntheses, Vol. 1–3, 2nd edn, Academic Press, New York (1996)

    Google Scholar 

  • S. R. Sandler, W Karo, E. M. Bonesteel, E. M. Pearce, Polymer Synthesis and Characterization — A Laboratory Manual, Academic Press, San Diego (1998)

    Google Scholar 

  • S. R. Sandler, W. Karo, Sourcebook of Advanced Polymers Laboratory Preparation, Academic Press, San Diego (1998)

    Google Scholar 

1.4.4 Nomenclature

  • A. D. Jenkins, K. L. Loening, Nomenclature, in G. Allen, J. C. Bevington, C. Booth, C. Price (Eds), Comprehensive Polymer Science, Vol. 1, p. 13, Pergamon Press, Oxford (1989)

    Chapter  Google Scholar 

  • Nomenclature of Regular Double-Strand (Ladder and Spiro) Organic Polymers (Recommendations 1993), Pure Appl.Chem. 65,1561 (1993)

    Article  Google Scholar 

  • Structure-Based Nomenclature for Irregular Single-Strand Organic Polymers (Recommendations 1993), Pure Appl. Chem. 66,873 (1994)

    Google Scholar 

  • Graphic Representation (Chemical Formulae) of Macromolecules (Recommendations 1994). Pure Appl Chem. 66,2469 (1994)

    Article  Google Scholar 

  • Basic Classifications and Definitions of Polymerization Reactions, Pure Appl. Chem. 66, 2483 (1994)

    Article  Google Scholar 

  • W. V. Metanomski, Nomenclature of Polymers, in J. Brandrup, E. H. Immergut, E. A. Grulke (Eds), Polymer Handbook, 4th edn, John Wiley and Sons, New York (1999)

    Google Scholar 

  • Source Based Names of Non-Linear Polymers, Pure Appl. Chem. 69 2511 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Braun, D., Cherdron, H., Ritter, H. (2001). Introduction. In: Polymer Synthesis: Theory and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04573-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04573-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04575-6

  • Online ISBN: 978-3-662-04573-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics