Skip to main content

Application of Normalization Method for Determining J—R Curves in the Amorphous Polymer PVC

  • Chapter
  • 1038 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The increased industrial application of thermoplastics as engineering plastics has resulted in an increase of fracture mechanics research on polymer materials [1–5]. The fracture of polymers may become a decisive factor in material selection and their crack resistance, especially against stable crack growth, determines their usefulness in many applications (pp. 3–26, [6]). Therefore, much work has been done to develop effective evaluation methods for polymers and composites. For tough polymers that exhibit strong viscoelastic behaviour or significant plastic crack tip deformation during the process of fracture, elastic—plastic fracture mechanics (EPFM) methods have been successfully used to describe the fracture behaviour under quasi-static loading [7,8] and under dynamic loading [9,10].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swallowe G. M. (Ed.) (1999): Mechanical Properties and Testing of Polymers — An A—Z Reference. Polymer Science and Technology Series. Brewis D., Briggs D. (Eds.), Chapman & Hall, London

    Google Scholar 

  2. Choi N. S., Takamashi K., Oschmann, D., Karger-Kocsis J., Friedrich K. (1998): Influence of weathering on unreinforced and short glass fibre reinforced thermoplastic polyester. J. Mat. Sci. 33: 2529–2532

    Google Scholar 

  3. Karger-Kocsis J., Putmoki I., Schöpf A. (1997): Radial perforation impact behaviour of 13-polypropylene homopolymer pipes and polypropylene random copolymer pipes. Plast. Rubber Compos. Process. Appl. 26 (8): 372–375

    Google Scholar 

  4. ISO/DIS 13479 (1994): Polyethylene (PE) Pipes for the Conveyance of Fluids — Resistance to Crack Propagation — Method of Test for Slow Crack Growth on Notched Pipes (Notch Test)

    Google Scholar 

  5. Béguelin P., Fond C., Kausch H. H. (1998): The influence of inertial effects on the fracture of rapidly loaded compact tension specimens, part A: loading and fracture initiation. Intern. J. Fract. 89: 85–102

    Google Scholar 

  6. Akay M. (1999): Fracture mechanics properties. In: Brown R. (Ed.) Handbook of Polymer Testing. Marcel Dekker, Inc. New York: 533–588

    Google Scholar 

  7. Hashemi S., Williams J. G. (1986): Fracture characterization of tough polymers using the J method. Polym. Engng. Sci. 26: 760–767

    Google Scholar 

  8. Huang D. D., Williams J. G. (1987): J testing of toughened nylons. J. Mat. Sci. 22: 25032508

    Google Scholar 

  9. Grellmann W., Seidler S. (1992): J-integral analysis of fibre-reinforced injection-moulded thermoplastics. J. Polym. Engng 11. 71–101

    Google Scholar 

  10. Grellmann W., Seidler S., Lauke B. (1991): Application of J-integral concept for the description of toughness properties of fibre reinforced polyethylene composites. Polym. Compos. 12: 320–326

    Google Scholar 

  11. Anderson T. L. (1995): Fracture Mechanics. Fundamentals and Applications. CRC Press, Boca Raton

    Google Scholar 

  12. ASTM E 1737 (1996): Standard Test Method for J-Integral Characterization of Fracture Toughness. Annual Book of ASTM Standards, Philadelphia, Vol. 03. 01

    Google Scholar 

  13. Seidler S., Grellmann W. (1995): Application of the instrumented impact test to the toughness characterization of high impact thermoplastics. Polym. Test. 14: 453–469

    Google Scholar 

  14. Chung W. N., Williams J. G. (1991): Determination of J1c of polymers using the single specimen method. In: Joyce J. A. (Ed.) Elastic-Plastic Fracture Test Methods: The User’s Experience. ASTM STP 1141: 320–339

    Google Scholar 

  15. Wert M. J., Saxena A., Ernst H. A. (1990): Applicability of modified J as a fracture parameter for polycarbonate. J. Test. Evaluat. 18: 1–13

    Google Scholar 

  16. Atkins A. G., Lee C. S., Caddell R. M. (1975): Time—temperature dependent fracture toughness of PMMA. J. Mat. Sci. 10: 1381–1393

    Google Scholar 

  17. Lu M. L., Chang F. C. (1995): Fracture toughness of PC/PBT blend based on J-integral methods. J. Appl. Polym. Sci. 56: 1065–1075

    Google Scholar 

  18. Strebel J. J., Moet A. (1993): Determining fracture toughness of polyethylene from fatigue. J. Mat. Sci. 28: 2981–2988

    Google Scholar 

  19. Moskala E. J. (1992): Fracture behavior of rubber-toughened polymer blends. J. Mat. Sci. 27: 4883–4889

    Google Scholar 

  20. Joyce J. A., Ernst H. A., Paris P. C. (1980): Direct evaluation of J-resistance curves from load displacement records. In: Paris P. C. (Ed.) Fracture Mechanics. Proceedings of the 12th National Symposium on Fracture Mechanics, ASTM STP 700: 222–236

    Google Scholar 

  21. Landes J. D., Zhou Z., Lee K., Herrera R. (1991): Normalization method for developing J—R curves with the LMN function. J. Test. Evaluat. 19: 305–311

    Google Scholar 

  22. Zhou Z., Lee K., Herrera R., Landes J. D. (1991): Normalization: an experimental method for developing J—R curves. In: Joyce J. A. (Ed.) Elastic—Plastic Fracture Test Methods: The User’s Experience. ASTM STP 1114: 42–56

    Google Scholar 

  23. Landes J. D., Zhou Z. (1993): Application of load separation and normalization methods for polycarbonate materials. Int. J. Fract. 63: 383–393

    Google Scholar 

  24. Zhou Z., Landes J. D., Huang D. D. (1994): J—R curve with the normalization method for toughened polymers. Polym. Engng. Sci. 34: 128–134

    Google Scholar 

  25. Ernst H. A., Paris P. C., Landes J. D. (1981): Estimation on J-integral and tearing modulus T from a single specimen test record. In: Roberts R. (Ed.) ASTM STP 743: 476–502.

    Google Scholar 

  26. Sharobeam M. H., Landes J. D. (1991): The load separation criterion and methodology in ductile fracture mechanics. Int. J. Fract. 47: 81–104

    Google Scholar 

  27. Sharobeam M. H., Landes J. D. (1993): The load separation and tip, development in pre-cracked specimen test records. Int. J. Fract. 59: 213–226

    Google Scholar 

  28. Herrera R., Landes J. D. (1988): A direct J—R curve analysis of fracture toughness tests. J. Test. Evaluat. 16: 427–449

    Google Scholar 

  29. Bernal C. R., Cassanelli A. N., Frontini P. M. (1995): A simple method for J—R curve determination in ABS polymers. Polym. Test. 14: 85–96

    Google Scholar 

  30. Herrera R., Landes J. D. (1990): Direct J—R curve analysis: a guide to methodology. In: Gudas J. P., Joyce J. A., Hackett E. M. (Eds.) Fracture Mechanics: 21st Symposium, ASTM STP 1074: 24–43

    Google Scholar 

  31. Orange T. W. (1990): Methods and models for R-curve instability calculations. In: Gudas J. P., Joyce J. A., Hackett E. M. (Eds.) Fracture Mechanics: 21st Symposium, ASTM STP 1074: 545–559

    Google Scholar 

  32. Standard Draft ESIS TC 4 (1995): A Testing Protocol for Conducting J-Crack Growth Resistance Curve Tests on Plastics

    Google Scholar 

  33. Seidler S., Grellmann W. (1995): Application of the instrumented impact test to the toughness characterization of high impact thermoplastics. In: Williams J. G., Pavan A. (Eds.) Impact and Dynamic Fracture of Polymers and Composites. ESIS Publication 19: 171–179

    Google Scholar 

  34. Seidler S., Grellmann W. (1994): Crack initiation behaviour of polymers. In: Proceedings of Deformation, Yield and Fracture of Polymers, Cambridge, U.K., April 11–14: 1081–1084

    Google Scholar 

  35. Grellmann W., Bierögel C. (1998): Laser extensometry applied. Materialprüfung — Mater. Test. 40, 11–12: 452–459

    Google Scholar 

  36. Che M., Grellmann W., Seidler S. (1997): Crack resistance behaviour of polyvinylchloride. J. Appl. Polym. Sci. 64: 1079–1090

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Che, M., Grellmann, W., Seidler, S. (2001). Application of Normalization Method for Determining J—R Curves in the Amorphous Polymer PVC. In: Grellmann, W., Seidler, S. (eds) Deformation and Fracture Behaviour of Polymers. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04556-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04556-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07453-0

  • Online ISBN: 978-3-662-04556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics