Advertisement

Material Optimization of Polypropylene—Short-Glass-Fibre Composites

  • B. Langer
  • C. Bierögel
  • W. Grellmann
  • J. Fiebig
  • G. Aumayr
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The adaptation of material characteristics to specific applications by using different fillers and reinforcements and/or using composite materials is an international trend in the development of the properties of polymers. A necessary condition for specific requirements on the strength and toughness level of polymers to be satisfied is a knowledge of the deformation and fracture mechanisms [1,2].

Keywords

Fibre Content Linear Elastic Fracture Mechanic Stable Crack Growth Material Optimization Crack Propagation Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herakovich C. T. (1997): Mechanics of Fibrous Composites. Wiley-VCH, ChichesterGoogle Scholar
  2. 2.
    Karger-Kocsis J. (1995): Microstructural aspects of fracture in polypropylene and its filled, chopped fibre and fibre mat reinforced composites. In. Karger-Kocsis J. (Ed.) Polypropylene. Structure, Blends and Composites. Vol. 3, Composites. Chapman & Hall, London: 142–201CrossRefGoogle Scholar
  3. 3.
    Calm R. W., Haasen P., Kramer E. J. (1993): Structure and properties of composites. In: Chou T.-W. (Ed.) Material Science and Technology — A Comprehensive Treatment. WileyVCH, ChichesterGoogle Scholar
  4. 4.
    Hashemi S., Kooghilani M. (1995): Fracture toughness of injection moulded glass fiber reinforced polypropylene. Polym. Engng. Sci. 35: 1124–1132Google Scholar
  5. 5.
    Grellmann W., Bierögel C. (1998): Laser extensometry applied. Materialprüfung — Mater. Test. 40, 11–12: 452–459Google Scholar
  6. 6.
    Langer B Bierögel C., Grellmann W., Aumayr G., Fiebig J. (2000): Material optimization of PP-short glass fibre composites. In: Proceedings of Polymeric Materials P’2000, Halle, Germany, September 25–27: 462Google Scholar
  7. 7.
    Grellmann W., Seidler S., Lauke B. (1991): Application of the J-integral-concept for the description of toughness properties of fibre reinforced polyethylene composites. Polym. Compos. 12, 5: 320–326CrossRefGoogle Scholar
  8. 8.
    Grellmann W., Seidler S., (1992): J-integral analysis of fibre-reinforced injection-moulded thermoplastics. J. Polym. Engng. 11, 1–2: 71–101Google Scholar
  9. 9.
    Langer B. (1998): Bruchmechanische Bewertung von Polyamidwerkstoffen. Logos, BerlinGoogle Scholar
  10. 10.
    ESIS P2–92 (1992): ESIS-Procedure for Determining the Fracture Behaviour of MaterialsGoogle Scholar
  11. 11.
    Grellmann W., Bierögel C., König S. (1997): Evaluation of deformation behaviour in polyamide using laserextensometry. Polym. Test. 16: 225–240Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • B. Langer
    • 1
  • C. Bierögel
    • 1
  • W. Grellmann
    • 1
  • J. Fiebig
    • 2
  • G. Aumayr
    • 2
  1. 1.MerseburgGermany
  2. 2.LinzAustria

Personalised recommendations