Skip to main content

Determination of Local Deformation Behaviour of Polymers by Means of Laser Extensometry

  • Chapter
Deformation and Fracture Behaviour of Polymers

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

On the one hand, the polymer industry is characterized by an increasing specialization and variety of products. On the other hand, there is also an increasing range of applications for plastics. Chemical and physical modification of the basic polymer materials, often as a result of customers’ demands, has led to a confusing variety of materials on offer. The choice of a specific polymer is often influenced by an insignificant change in the material properties. In addition to such small changes, the cost is decisive in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matsuoka T. (1998): Fibre orientation due to processing and prediction. In: Karger-Kocsis J. (Ed.) Polypropylene: A—Z Reference. Kluwer Academic, Dordrecht: 233–239

    Google Scholar 

  2. Bartnig K., Bierögel C., Grellmann W., Ruflce B. (1992): Anwendung der Schallemission, Thermographie und Dielektrometrie zur Bewertung des Deformationsverhaltens von Polyamiden. Plaste Kautschuk 39: 1–8

    Google Scholar 

  3. Thomason J. L. (1998): Mechanical and thermal properties of long glass fibre reinforced polypropylene. In: Karger-Kocsis J. (Ed.) Polypropylene: A—Z Reference. Kluwer Academic, Dordrecht: 407–414

    Google Scholar 

  4. Markowski W. (1990): New fundamental of material testing system. Materialprüfung — Mater. Test. 32: 144–148

    Google Scholar 

  5. Andresen K., Ritter R., Steck E. (1991): Theoretical and experimental investigations of fracture by FEM and grating methods. In: Blauel J. G., Schwalbe K.-H. (Eds.) Defect Assessment in Components — Fundamentals and Applications. ESISIEGF9, Mechanical Engineering Publications, London: 345–361

    Google Scholar 

  6. Pye C. T., Martin J. (1993): Video extensometer principles and operation. Sensors 11: 10–14

    Google Scholar 

  7. Jones R., Wykes C. (1989): Holographic and Speckle Interferometry, 2nd edition. Cambridge University Press, Cambridge

    Google Scholar 

  8. Ettemeyer A., Wang Z., Walz T. (1996): Applications of speckle interferometry to material testing. In: Proceedings of the KSME Conference, Seoul, Korea, November 1: 461–466

    Google Scholar 

  9. Martinez J. A., Criado N., Eisenreich N., Kugler H. P., Drude H. (1993): Distribution of mechanical properties in a 2014 T6 welded joint. Aluminium 69: 646–648

    Google Scholar 

  10. Che M., Grellmann W., Seidler S. (1997): Crack resistance behavior of polyvinylchloride. J. Appl. Polym. Sci. 64: 1079–1090

    Google Scholar 

  11. Grellmann W., Seidler S., Bierögel C. (1997): Geometry-independent fracture mechanics values as a requirement for toughness optimization of polymers. In: Proceedings of the 9th International Conference on Fracture (ICF9), Sydney, Australia, April 1–5, Vol. 2: 1013–1020

    Google Scholar 

  12. Bierögel C., Fahnert T., Grellmann W. (2000): Evaluation of the deformation of polyamide materials under tension using laser extensometry. In: Proceedings of the 13th European Conference on Fracture, San Sebastian, Spain, September 6–9, CD-ROM Polymer and Composites, No. 17: 1–8

    Google Scholar 

  13. Grellmann W., Bierögel C., König S. (1997): Evaluation of deformation behaviour of polyamide using laser extensometry. Polym. Test. 16: 225–240

    Google Scholar 

  14. Standard Draft ESIS TC 4 (1991): A Testing Protocol for Conducting J-Crack Growth Resistance Curves Tests on Plastics

    Google Scholar 

  15. Huang D. D. (1989): A comparison of multispecimen J-integral methods as applied to toughened polymers. In: Proceedings of the 7th International Conference on Fracture, Advances in Fracture Research (ICF7), Houston, Texas, March 20–24: 2725–2732

    Google Scholar 

  16. Grellmann W., Bierögel, C. (1998): Laser extensometry applied. Materialprüfung — Mater. Test. 40, 11–12: 452–459

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bierögel, C., Grellmann, W. (2001). Determination of Local Deformation Behaviour of Polymers by Means of Laser Extensometry. In: Grellmann, W., Seidler, S. (eds) Deformation and Fracture Behaviour of Polymers. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04556-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04556-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07453-0

  • Online ISBN: 978-3-662-04556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics